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Do we have adequate data to distinguish
climate warming trends from
naturally occurring climate oscillations?
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Rationale

Headwater catchment export signals contain a complex mix of
signals:

— Non-stationary (climate trends)

* deterministic responses where the statistical mean and variance
change with time, predictably and unpredictably

— Stationary (climate oscillations)
* stochastic responses where the statistical mean and variance do
not change with time

In landscapes that are not impacted by human activities, if we
are able to discriminate climate trends from climate
oscillations, these headwater catchments could serve as
sentinels of climate change.
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Hypotheses

Non-stationary signal > stationary signal.

Both signals are greater in catchments that have higher water
loading potential and/or with lower water storage capacity.

Non-stationary signals are related to global warming while
stationary signals are related to global climate oscillations at
scales that range several years to several decades.
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Optimal time scale?

: m— R’=0.018, p < 0.05
* Climate indices provided at
monthly intervals.
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* Observed no to minimal non- "Ta
stationary signals in monthly and
seasonal time series (too variable).
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Detecting non-stationary trend

I Check if non-stationary trend exists. I

v

Evaluate trend
statistics (R?, p).

Do residuals show remaining
autocorrelation?
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2 1200 Linear Trend (y = -14.61x + 843.43),
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Detecting non-stationary trend

‘ Check if non-stationary trend exists. ‘

v

Evaluate trend

statistics (R, p). |

Do residuals show remaining
autocorrelation?
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‘ Check if non-stationary trend exists. ‘
v L2

Evaluate trend
statistics (R, p).

‘ Yes ‘ ‘ No ‘

Do residuals show remaining
autocorrelation?

v v
‘ Yes ‘ ‘ No ‘
v
‘ Remove trend.
Vv
‘ Perform wavelet transform on the ‘
detrended data. H
poly waveet . Analytical framework for
transform on Check if stationary cycles exist by . I d .
residuals to analysing the Global Wavelet Power
investigate for the Spectrum (GWPS) data. Sl g na EteCtI on
next stationary )
signal. Perform inverse wavelet transform to
reconstruct the dominant stationary
Evaluate signal.
strength of
signal (R, p). ‘ p<0.05? No ‘
Fit the reconstructed signal with a
stationary wave function (sine curve).
Subtract the model fit from the data
input to the wavelet.
Do residuals show remaining
autocorrelation?
v
‘ Yes ‘ ‘ No ‘
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Perform wavelet transform on the £ -200¢
detrended data. 8 o0l L R .
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transform on Check if stationary cycles exist by Year
residuals to analysing the Global Wavelet Power

investigate for the

Spectrum (GWPS) data.

next stationary

Perform inverse wavelet transform to

signal. c !
7'y reconstruct the dominant stationary
Evaluate signal.
strength of
signal (R.p)| | P<0052 | | No

v

Fit the reconstructed signal with a

stationary wave function (sine curve).

Subtract the model fit from the data
input to the wavelet.
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Do residuals show remaining
autocorrelation?

v v
‘ Yes ‘ ’ No
I
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Remove trend.

¥

Perform wavelet transform on the
detrended data.

100

Apply wavelet - - - f
transform on Check if stationary cycles exist by Morlet wavelet is a
residuals to analysing the Global Wavelet Power sine wave (blue curve) multiplied by a
investigate for the Spectrum (GWPS) data. . ( | ) d P 4
next stationary : Gaussian envelope (red curve).
signal. Perform inverse wavelet transform to
7'y reconstruct the dominant stationary
Evaluate signal. 2
strength of T
signal (R, p). ‘ p<0.05? ‘ ’ No &
_§ 4
Yes K
8
Fit the reconstructed signal with a — .
stationary wave function (Sine Curve)_ 1981 1983 1985 1987 1989 1991 1993 1995 1897 1989 2001 2003 2005 2007
Year
Subtract the model fit from the data
input to the wavelet. The thin solid line (cone of influence),
- ¥ — delimits region not influenced by edge effect.
Do residuals show remaining
autocorrelation?
v v The thick solid lines show the
‘ Yles ‘ ’ No 95% confidence level.
Remove trend.
v
Perform wavelet transform on the 300 ——r N —
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Apply wavelet - - = S 200
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2
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investigate for the
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Spectrum (GWPS) datﬁ.

Perform inverse wavelet transform to

signal. c !
7'y reconstruct the dominant stationary
Evaluate signal.
strength of
signal (R.p)| | P<0052 | | No

Fit the reconstructed signal with a
stationary wave function (sine curve).

Subtract the model fit from the data
input to the wavelet.
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Do residuals show remaining
autocorrelation?

v v
‘ Yes ‘ ’ No
I

i T
1 3 5 7 9 1 13 15 17 19 21 23 25 27
Scale (in Years)

Rules for signal detection:

1. Signal must occur twice in record

2. Entire signal must be within half the
record

3. Select dominant signal

3. Establish baseline and identify
the scales (years) above baseline that
form the beak

4, Never select same scales (years) twice
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Remove trend.

| 2

Perform wavelet transform on the
detrended data.

Apply wavelet
transform on
residuals to
investigate for the
next stationary

Check if stationary cycles exist by
analysing the Global Wavelet Power
Spectrum (GWPS) data.

Perform inverse wavelet transform to
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Subtract the model fit from the data
input to the wavelet.
v
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autocorrelation?
v v
‘ Yes ‘ ’ No
I
Remove trend.
v
Perform wavelet transform on the
detrended data.
Apply wavelet
tril%)slform on Check if stationary cycles exist by
residuals to analysing the Global Wavelet Power

investigate for the
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Spectrum (GWPS) data.

Perform inverse wavelet transform to

signal. c !
7'y reconstruct the dominant stationary
Evaluate signal.
strength of
signal (R.p)| | P<0052 | | No

h 4

Fit the reconstructed signal with a
stationary wave function (sine curve).

v

Subtract the model fit from the data
input to the wavelet.
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Do residuals show remaining
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Remove trend.
v
Perform wavelet transform on the
detrended data.

Apply wavelet - - -
transform on Check if stationary cycles exist by
residuals to analysing the Global Wavelet Power
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signal. v Perform inverse wavelet transform to
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Fit the reconstructed signal with a
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Perform wavelet transform on the
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Discharge (mm/ year)

Year

Apply wavelet - - . R
transform on Check if stationary cycles exist by Z
residuals to analysing the Global Wavelet Power H
investigate for the Spectrum (GWPS) data. i
next stationary T ¥
signal. a4 Perform inverse wavelet transform to
A reconstruct the dominant stationary Vear
Evaluate signal. auu L
«— v

strength of
signal (R.p)| | P<0052 | | No

3PS (x10° degC’)

v a5 B B v T
Fit the reconstructed signal with a
stationary wave function (sine curve).

H e Do o
H T e T B s asvear - 3417 ~028.p 0004
E
Subtract the model fit from the data 4
input to the wavelet. g
v L e L L
- — o1 rdss s rdan vdeevier rdey rdn wdervise ador 20 aios ador
Do residuals show remaining Year
autocorrelation?
v v 5
T ves | [ o RS
Ies (2 . e 1 | - 1 - !
i3 us__l _______________________________
=]
o 2 4 6 8 0 12 14 16 18 0




SES
2o
Remove trend. s A
v £
Perform wavelet transform on the o o s
detrended data. vear
Apply wavelet - - ’ _
transform on Check if stationary cycles exist by £
residuals to analysing the Global Wavelet Power 5
investigate for the Spectrum (GWPS) data. &
next stationary )
; Perform inverse wavelet transform to
signal. - . loi tes3 teas a7 fisme 1991 fsay 1995 oG 168 2001 2003 2005 2007
A reconstruct the dominant stationary Vear
Evaluate signal. o Lo Lo -
— 2
strength of > £
: c
signal (R.p)| | p<005? | [ Mo
P
L
&
Yes
oF 3 5 T Bl 17 EEl 15 7 19 21 23 25 7
Scale (in Years)
Fit the reconstructed signal with a
stationary wave function (sine curve). g ooy Detrented Dt 57 0% 5 0 ode
E o e o i 55 e G673
£
Subtract the model fit from the data g o A
input to the wavelet. 2 om-
- ¥ — i gy rdes i ose vosr wbes rdes wder vdse wion s edos zior
Do residuals show remaining Vear
autocorrelation?
v v o
‘ Y ‘ ’ N E R R R b b bk
es ° | . P
I N :
EFR SR R R L R R R R
a
15 2 4 6 8 0 12 14 16 18 0
Lsa
z o
Remove trend. HE
v 2w
Perform wavelet transform on the e e e v e e e e e w0
detrended data. vear
Apply wavelet

transform on
residuals to
investigate for the
next stationary

Check if stationary cycles exist by
analysing the Global Wavelet Power
Spectrum (GWPS) data.

signal. Perform inverse wavelet transform to
7'y reconstruct the dominant stationary
Evaluate signal.
strength of
signal (R.p)| | P<0052 | | No

v

Fit the reconstructed signal with a
stationary wave function (sine curve).

Subtract the model fit from the data
input to the wavelet.

L 2

Do residuals show remaining
autocorrelation?

v v
‘ Yes ‘ ’ No
I

Period (Years)

3WPS (x10' degC')

ischarge Residual
Autocorrelation

Discharge (mm/year]

191 1983 1985 1%e7 1389 1991 1993 935 1937 1999 2001 2003 2005 2007
ear

w0 am s
Scale (in Years)

— Yeary Detiended Discharge - 6.7 10 8.5 Y7 Q Model - 210 2.8 Y7 O Model
-+ 350 8B Yr O Al (4065751 30 Vear + 2 98]

a
g1 ioms o teer 1o 199 19w 1% i9eT 1999 2001 2003 2005 2007

Year
L Y e
] 1 s 3 T . L [
l l : 1 1 B 1
T
B z 0 5 0 [ T T 0
Lag

7/29/2012



Discriminate
non-stationary vs. stationary signals

e
Signal 1 vs.

Raw Q — Linear trend

Signal 2 vs.

Raw Q — Linear trend, Signal 1

Signal 3 vs.

Raw Q — Linear trend, Signal 1, 2

Signal 4 vs.

Raw Q — Linear trend, Signal 1, 2, 3

I N . \onstationary

Linear trend + Signal 1
Linear trend + Signal 1 + 2
Linear trend + Signal 1 +2 + 3 —_— Stationary
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Application to
catchments in Canada’s “north”

Canada's Boreal Forest Region

Boreal Forest Region

M Boreal Forest
Aspen Parkland

. Teigs
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The old-growth forest of the Algoma Highlands is one of the
largest areas of pristine forested landscape remaining in the
Great Lakes basin

Rainbow Country
Lakeland

el
e F
n— Festival Country
Seuthwest Ontario
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Study Area

Field station in Algoma
Highlands

Inter-institutional consortium
of researchers

Mobile accommodation and
field laboratory
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21-25 May 2012, Potsdam, Germany

30-year record shows climate is dynamic in

Algoma Highlands
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Until 2008,
warming of

1 degree Celsius
per decade!
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Is there similarity in catchment responses
to climate dynamics?

84°96\W

8424W

ToLake
P

wenm

Turkey Lakes Watershed

a7aN

Since 1981, monitoring
hydrology and
biogeochemistry of 12
headwater catchments, chain
of five lakes, and Norberg
Creek that drains into Lake
Superior

472N

0 05 1km
[

ONTARIO
9

T
84728

B4 24W

Turkey Lakes
watershed

I Catchmentweirs
- Catchments
|:| Lakes

Streams

20m
elevation contours

@ Meteorological
Station

S e | e | w | oo |
6.5 3.4 9.5

Size (ha) 4.0
Water loading Lower Lower Higher Higher
Water storage (% wetland) 1 21 0.3 10

25

Is there similarity in catchment responses
to climate dynamics?

Higher
water loading

.:.F:

Higher
water storage
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Higher
water Ioadmg

Fik?
at %

—=c35

1250 1 ey
\

Higher
water storage

T T T T T 1
1980 1985 1990 1995 2000 2005 2010

Water Export

Catchment water export

(r?)

| 000000 |c3s]c38|ca7]| €50

Linear trend vs.
Raw (0]

o I ] ] I

Signal 1 vs. 0.27 0.26 0.19

Raw Q - Linear trend

Signal 2 vs. 031 0.26 0.23 0.28

Raw Q - Linear trend, Signal 1

Signal 3 vs. 0.19 0.26 0.32 0.15

Raw Q - Linear trend, Signal 1, 2
Signal 4 vs. NS
Raw Q - Linear trend, Signal 1, 2, 3

21-25 May 2012, Potsdam, Germany

NS NS No Signal

28

7/29/2012

14



Catchment water export
(cumulative r?)

0000000000000 s |38 | a7 |cso

Non-stationarysignal | 052 | 044 | Ns |08
0.65 059 0.9 0.39
076 068 038 0.6
081 076 056 0.63

stationary signals | 0.29 | 032 056 0.5
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Non-stationary signals

l warming

-0.53 -0.57 -0.37 -0.43

! o

ool oo
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Stationary signals

Indices ______|Periodicity ___[Influence |

Multivariate El Nino

A periodicity of 2to 7  Positive numbers =

Southern Oscillation years warmer winters
Index
(MEI)
Northern Atlantic Periodicities of 7 to 9 Positive numbers =
Oscillation years and 20 years colder winters
(NAO)
Pacific Decadal A periodicity of 20 to Positive numbers =
Oscillation 30 years warmer and drier
(PDO) winters
Atlantic Multidecadal A periodicity of 60 to Positive numbers =
Oscillation 90 years warmer and drier
(AMO) conditions
21-25 May 2012, Potsdam, Germany 31
Stationary signals

NAO

AMO
o

-0.5 4

MEI
o w

Global Climate Oscillation
Indices

MEI = 2 to 7 years
0 NAO = 7 to 9 years, 20 years
PDO =20 to 30 years
AMO =70 to 90 years

Turkey Lakes Watershed
period of record

——
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Wavelet cross-coherence between
climate oscillations and water export

Wavelet power spectrum of MEI Index

981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

MEI Index

b b = o

g
g ‘
% 12
A 8 1/4
1931‘19‘83‘19‘85'19;(7'19@‘!5‘91‘19‘93 1995 1997 1999 2001 2003 2005 2007 "w
Year
versus
Wavelet power spectrum of ¢35 water export
g
2o
AP
g‘7 -100
g -200 \/ \ﬁ//
B ST Tows 1955 1957 19w 1991 1993 1995 1997 199 2001 2003 2005 2007

Period (Year)
-

»

1981 1983 1085 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007
Year

Yearly MEI vs. C35 Yearly Discharge

Period (Year)

Time (Year)

The thin solid line (cone of influence),

delimits region not influenced by edge effect.

The thick solid lines show the
95% confidence level.
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Wavelet cross-coherence between
climate oscillations and water export

Yearly ME| vs. C35 Yearly Discharge

Period (Y ear)
=

1981 1983 1985 1987 1989 1901 1093 1095 1997 1999 2001 2003 2005 2007

— ]
el
iy g
Tre

o g @ 0.8
¥oN dF
oy oe
= &
¥

i 0.6

0.4

0.2

! ! | | | | N

Time (Year)

Negative correlation or

export

Positive correlation or

v 1

precipitation leads NO;” export

precipitation lags behind NO;

Determining Lag/Lead at a Period
phaseangle: (arrow angle * pi) / 180

Lag/Lead = phaseangle*period/(2*pi)
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Wavelet cross-coherence between
climate oscillations and water export

MEI
o

NAO
o

PDO
o

Higher

Higher
water storage

water loading

—

21-25 May 2012, Potsdam, Germany

35

Wavelet cross-coherence between
climate oscillations and water export

AMO
o

-0.5 -

Higher
water loading

water storage

Higher
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Wavelet cross-cohere

nce between

climate oscillations and water export

MEI
o

NAO
o

PDO
o

Higher
water storage

21-25 May 2012, Potsdam,

Higher
water loading )

Germany
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Wavelet cross-cohere

nce between

climate oscillations and water export

AMO
o

-0.5 -

Higher
water storage

m 12, Potsdam,

Higher
water loading )

Period (Vears)

Until 2008,
warming of

1 degree Celsius
per decade!

Germany
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Pearson correlation matrix

0.011 0.600*** -0.152

NAO = = -0.387*  -0.257
PDO = = = -0.314
AMO
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Stationary signals
MEI NS

NAO NS NS NS

<0.05 | <0.05 mE\N

<005 Ns
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AMO: Dominant global climate oscillation
driving local temperature patterns

=——=Temperature {y = 0.06x + 3.6, R*= 0.24)

B r 03
——AMO Index {y = 0.02x - 0.21, R*= 0.59)

I 02

r 01

r 0.0

Xapul OINY

[ -0.1

0.2

1 [ 0.3

Annual Average Air Temperature {°C)
=

0

———7———7—7———7—————— 04
1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Year

Findings for water export

Non-stationary signal > stationary signal.
NON-STATIONARY SIGNALS GREATER IN CATCHMENTS WITH LWLP (c35, c38).
STATIONARY SIGNALS GREATER IN CATCHMENTS WITH HWLP (c47, c50).

Combined signals are greater in catchments that have lower water loading
potential and/or with lower potential water storage capacity.
COMBINED SIGNALS GREATEST IN CATCHMENT WITH LWLP and LWSC (c35).

Non-stationary signals are related to global warming while stationary signals
are related to global climate oscillations at scales that range several years to
several decades.

SIGNFICANT RELATIONSHIPS BETWEEN CLIMATE WARMING AND CLIMATE
OSCILLATIONS AND WATER EXPORT OBSERVED.
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Should we expect the same
findings for solute export?
(DOC, DON, TDP, nitrate export)
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o Higher
© water loading
L« O
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DON Export
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water storage
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Higher

g’ﬂ water Ioading é

T T T T T
1985 1990 1995 2000 2005

Nitrate Export

100-year storm event in 2007!
Extreme events buggered wavelet analyses
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Cumulative r? explained by
non-stationary and stationary signals
(1981-2006)

o | o | o | oo

Non Stationary Non Stationary Non Stationary Non Stationary
Stationary Stationary Stationary Stationary

Water (0.52 029 0.44 032 0 0.56 o018 0.45
DoC 0 0.53 0 0.88 0 0.69 0 0.53
DON 0.80 009 026 0.43 029 0.47 039 034
TP 0.42 020 o016 0.61 0 0.32 o019 0.30
Nitrate 028  (0.57 0 0.52 0 0.60 0.39 o026
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Findings for solute export
WATER AND SOLUTE EXPORTS HAVE DIFFERENT COMPOSITION OF SIGNALS.

* Non-stationary signal > stationary signal.
C35 (LWLP, LWSC) MOST SENSITIVE TO NON-STATIONARY SIGNALS.

* Combined signals are greater in catchments that have lower water loading
potential and/or with lower potential water storage capacity.
COMBINED SIGNALS FOR INORGANIC SPECIES STRONGEST IN C35 (LWLP,
LWSC), WHILE FOR ORGANIC SPECIES STRONGEST IN C38 (LWLP, HWSC).

DOC DIFFERENT FROM DON & TDP IN CATCHMENTS WITH LWSC,
BUT SIMILAR IN CATCHMENTS WITH HWSC.

* Non-stationary signals are related to global warming while stationary signals
are related to global climate oscillations at scales that range several years to

several decades.
TBA. 21-25 May 2012, Potsdam, Germany 50
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Take home messages

* Natural climate oscillations have
resulted in reduction in water, solute
export in past 30 years.

* The rate of reduction accelerated by
climate warming trends in some
catchments.

* Water and solutes behave differently
to these climate drivers.

* Catchments with lowest water
loading and lowest water storage
most sensitive to both types of
signals, suggesting it to be a good
sentinel of climate change.
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