

- Headwater catchment export signals contain a complex mix of signals:
 - Non-stationary (climate trends)
 - deterministic responses where the statistical mean and variance change with time, predictably and unpredictably
 - Stationary (climate oscillations)
 - stochastic responses where the statistical mean and variance do not change with time
- In landscapes that are not impacted by human activities, if we are able to discriminate climate trends from climate oscillations, these headwater catchments could serve as sentinels of climate change.

21-25 May 2012, Potsdam, Germany

Evaluate trend statistics (R^r, ρ) . Apply wavelet transform on residuals to investigate for the next stationary signal. Evaluate strength of signal (R^r, ρ) .	Check if non-stationary trend exists. Yes Na Do residuals show remaining autocorrelation? Yes Na Yes Na Yes Na Remove trend. Perform wavelet transform on the detrended data. Check if stationary cycles exist by analysing the Global Wavelet Power Spectrum (GWPS) data. Perform inverse wavelet transform to reconstruct the dominant stationary signal. p< 0.05? No	Analytical framework for signal detection	r
	Yes Fit the reconstructed signal with a stationary wave function (sine curve). Subtract the model fit from the data input to the wavelet. Do residuals show remaining autocorrelation? Yes No 21-25 May 2012,	Potsdam, Germany	6

Catchment water export (r ²)							
	C35	C38	C47	C50			
Linear trend vs.	0.52	0.44	NS	0.18			
Raw Q							
Linear trend (slope)	-14.8	-13.0	NS	-8.9			
Signal 1 vs.	0.27	0.26	0.19	0.26			
Raw Q – Linear trend							
Signal 2 vs.	0.31	0.26	0.23	0.28			
Raw Q – Linear trend, Signal 1							
Signal 3 vs.	0.19	0.26	0.32	0.15			
Raw Q – Linear trend, Signal 1, 2							
Signal 4 vs.	NS	NS	NS	No Signal			
Raw Q – Linear trend, Signal 1, 2, 3							
21-25 May 2012, Potsdam, Germany 28							

Catchment water export (cumulative r ²)								
	C35	C38	C47	C50				
Non-stationary signal	0.52	0.44	NS	0.18				
Linear trend + Signal 1	0.65	0.59	0.19	0.39				
Linear trend + Signal 1 + 2	0.76	0.68	0.38	0.56				
Linear trend + Signal 1 + 2 + 3	0.81	0.76	0.56	0.63				
Stationary signals 0.29 0.32 0.56								
21-25 May 2012, Potsdam, Germany								

St	ationary sigr	nals
Indices	Periodicity	Influence
Multivariate El Nino Southern Oscillation Index (MEI)	A periodicity of 2 to 7 years	Positive numbers = warmer winters
Northern Atlantic Oscillation (NAO)	Periodicities of 7 to 9 years and 20 years	Positive numbers = colder winters
Pacific Decadal Oscillation (PDO)	A periodicity of 20 to 30 years	Positive numbers = warmer and drier winters
Atlantic Multidecadal Oscillation (AMO)	A periodicity of 60 to 90 years	Positive numbers = warmer and drier conditions
	21-25 May 2012, Potsdam, Germany	1

Pearson correlation matrix								
	MEI	NAO	PDO	AMO				
MEI	-	0.011	0.600***	-0.152				
NAO	-	-	-0.387*	-0.257				
PDO	PDO0.314							
AMO								
21-25 May 2012, Potsdam, Germany								

	Stationary signals										
Climate osc	Climate oscillations C35 C38 C47 C50										
MEI	MEI NS NS NS NS										
NAO		NS	NS	NS	NS						
PDO	PDO r 0.38										
	r ²	0.15	-	-	-						
	р	< 0.05	NS	NS	NS						
AMO	r	-0.70	-0.68	-	-0.43						
	r ²	0.49	0.46	-	0.19						
p < 0.05 < 0.05 NS < 0.05											
	21-25 May 2012, Potsdam, Germany 40										

Cumulative r ² explained by non-stationary and stationary signals (1981-2006)										
	C35 C38 C47 C50									
	Non Stationary	Stationary	Non Stationary	Stationary	Non Stationary	Stationary	Non Stationary	Stationary		
Water	0.52	0.29	0.44	0.32	0	0.56	0.18	0.45		
DOC	0	0.53	0	0.88	0	0.69	0	0.53		
DON	0.80	0.09	0.26	0.43	0.29	0.47	0.39	0.34		
TDP	0.42	0.20	0.16	0.61	0	0.32	0.19	0.30		
Nitrate	0.28	0.57	0	0.52	0	0.60	0.39	0.26		
	21-25 May 2012, Potsdam, Germany									

Take home messages

- Natural climate oscillations have resulted in reduction in water, solute export in past 30 years.
- The rate of reduction accelerated by climate warming trends in some catchments.
- Water and solutes behave differently to these climate drivers.
- Catchments with lowest water loading and lowest water storage most sensitive to both types of signals, suggesting it to be a good sentinel of climate change.

51

21-25 May 2012, Potsdam, Germany

