Investigating Carbon Storage and Accumulation Rates of Wetlands within the Agricultural Landscape of Southern Ontario

Eric Enanga, Irena Creed, Pascal Badiou, Mark Gloutney

International Association of Hydrological Sciences Scientific Decade of Change in Hydrology and Society (2013-2022)

Motivated by the challenges in understanding, predicting and managing water systems that are increasingly impacted by humans

Our focus is on **mineral wetland water systems** in highly managed landscapes

Wetland provides important ecosystem services:

- Flood control
- □ Water purification (phosphorus and nitrogen retention)
- Carbon sequestration

We will show how <u>farmers can increase the supply of</u> <u>ecosystem services by restoring wetlands</u> that not only improve their livelihoods, but also the many people living within the regional watershed

wetlands are being lost at an alarming rate in domesticating landscapes

Motivation

"up to 70 percent of wetlands have been degraded or lost in settled areas of Canada"

Warner, Asada. 2006. Knowledge gaps and challenges in wetlands under climate change in Canada. In: Price M, J Bhatti, M Apps (Eds). Climate change and managed ecosystems. CRC Press, Boca Raton, FL.

"domestication" of landscapes in Ontario agricultural intensification

Tockner, Pusch, Gessner, Wolter. 2011. Domesticated ecosystems and novel communities: challenges for the management of large rivers. Ecohydrol. Hydrobiol. 11:167-174

our **objectives** are to:

- 1 Estimate historic wetland loss
- 2 Establish priorities for **<u>restoration</u>** of drained wetlands
- 3 Estimate **<u>nutrient retention rate</u>** since restoration
 - a. Deepest point of wetland basin
 - b. For entire wetland basin
- 4 Determine the influence of the <u>surrounding landscape</u> <u>matrix</u> on nutrient retention potential

estimating drained wetlands using area-frequency power functions

estimating drained wetlands using area-frequency power functions

21%

Percent area lost

drained wetlands by type

Power Law Statistics (swamps)Percent number lost84%Percent area lost18%

Power Law Statistics (marshes)			
Percent number lost	90%		
Percent area lost	39%		

drained wetlands by connectivity

Power Law Statistics (connected)				
Percent number lost	79%			
Percent area lost	9%			

Power Law Statistics (isolated)				
Percent number lost	94%			
Percent area lost	53%			

three DUC project sites identified along this geographic gradient as potential sites from where wetlands could be sampled

sampled three marsh wetlands for each of the following: drained, 10, 20, 35 years since restoration, intact

sediment samples taken along a transects at four positions: P1 - center of wetland (open-water); P2 - emergent vegetation zone; P3 – wet meadow zone (i.e., high water mark); and P4 – upland where flooding rarely occurs.

three replicate samples taken using:

a WaterMark Universal Corer for sediments

 an AMS Extendible Corer for soils to a maximum 30 cm of depth.

each replicate core cut into <u>1 cm</u> <u>intervals</u> and composited in the field.

<u>sedimentation rates</u> and <u>organic</u> <u>C, N, P pools</u> determined for each 1 cm interval composited sample.

Atmospheric Deposition of ¹³⁷Cs

carbon sequestration rates estimated from <u>Cesium 137 (¹³⁷Cs)</u> and Lead 210 (²¹⁰Pb) isotopes.

for human-derived ¹³⁷Cs, there is a peak in ¹³⁷Cs that corresponds to the **1963 global peak emission** due to atmospheric testing of nuclear weapons.

assumed that atmospheric deposition of isotopes is spatially uniform.

Total carbon accumulation: **5.1 kg m**⁻² Carbon accumulation rate: **101 g m**⁻² **yr**⁻¹

step 2: C sequestration 10 years

23

80

Total carbon accumulation: 7.1 kg m⁻² Carbon accumulation rate: 142 g m⁻² yr⁻¹

step 2: C sequestration 20 years Cs-137 (Bq kg⁻¹), Organic C (%) -O-Cs-137 ACTIVITY - Organic C Depth (cm) 50 52 52 Sedimentation rate is high Focused sedimentation from surrounding land

Total carbon accumulation: 18.4 kg m⁻² Carbon accumulation rate: 369 g m⁻² yr⁻¹

step 2: C sequestration | 35 years

25

step 2: C sequestration intact

26

Total carbon accumulation: **negligible** Carbon accumulation rate: **0 g m**⁻² **yr**⁻¹

step 3: carbon pools within wetland basin

Open Water Classification

step 4: landscape mosaic (work in progress)

diversification of farmer's markets

policy options to encourage farmer uptake

- Fixed payments
- Tax rebates/incentives
- Reverse auctions
- Extension/education

diversification of farmer's markets

Restored wetland (ha)	Low carbon storage (52.1 Mg CO2 eq/yr)	High carbon storage (135.5 Mg CO2 eq/yr)	Economic Value (\$30/yr) of carbon storage based on different estimates	
			Market estimate \$/Mg CO2 eq	
			Low	High
1	52	135	\$1,562	\$4,059
10	521	1,353	\$15,620	\$40,590
100	5,207	13,530	\$156,200	\$405,900
1,000	52,067	135,300	\$1,562,000	\$4,059,000
10,000	520,667	1,353,000	\$15,620,000	\$40,590,000
353,160	18,387,875	47,782,578	\$551,636,264	\$1,433,477,333

*Note: 353,160 denotes total historic loss of isolated wetland area

- Include "bundles" of ecosystem services
- Model cumulative effects of the restored wetlands on provision of ecosystem services on regional watersheds
- Conduct model scenarios of future land development plans under global change

acknowledgements

David Lobb Eva Slavicek Nicole Larsen Aleksey Paltsev Michael Steiff Nico Trick Naomi Trick Tong Zou Dave McLachlin Erling Armson

