Problem Set 10

March 28, 2018.

1. Exercises 10.1-10.5.
2. Exercise 15.2.
3. Exercise 15.4.
4. Exercise 15.6.
5. (a) Use Jensen's Inequality to prove that

$$
\sqrt[n]{y_{1} \cdots y_{n}} \leq \frac{y_{1}+\cdots+y_{n}}{n}
$$

for all $n \in \mathbb{Z}_{+}$and $y_{1}, \ldots, y_{n} \in(0, \infty)$.
Hint: Apply Jensen's Inequality with the convex function $\varphi(t)=e^{t}, X=\left\{x_{1}, \ldots, x_{n}\right\}$, and $\mu\left(x_{i}\right)=1 / n$.
(b) Generalize the above argument to prove that

$$
y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} \cdots y_{n}^{\alpha_{n}} \leq \alpha_{1} y_{1}+\alpha_{2} y_{2}+\cdots+\alpha_{n} y_{n}
$$

for all $n \in \mathbb{Z}_{+}$, and $y_{1}, \ldots, y_{n}, \alpha_{1}, \ldots, \alpha_{n} \in(0, \infty)$ with $\sum_{i=1}^{n} \alpha_{i}=1$.
6. Prove that, if $1 \leq p \leq \infty$ and if $\left(f_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in $L^{p}(\mu)$ with limit f, then $\left(f_{n}\right)$ has a subsequence which converges pointwise almost everywhere to f.
7. Suppose (X, \mathcal{M}, μ) is a measure space with $\mu(X)=1$, and $f: X \rightarrow[0, \infty)$ is measurable. If

$$
A=\int_{X} f d \mu
$$

prove that

$$
\sqrt{1+A^{2}} \leq \int_{X} \sqrt{1+f^{2}} d \mu \leq 1+A
$$

8. Let m denote the Lebesgue measure on \mathbb{R}.
(a) Find a sequence of Lebesgue integrable functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$, such that $\int_{\mathbb{R}} f_{n} d m \longrightarrow \infty$ but $\left\|f_{n}\right\|_{\infty} \longrightarrow 0$, as $n \rightarrow \infty$.
(b) Find a sequence of Lebesgue integrable functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$, such that $\int_{\mathbb{R}} g_{n} d m \longrightarrow 0$ but $\left\|g_{n}\right\|_{\infty} \longrightarrow \infty$, as $n \rightarrow \infty$.
(c) Find a sequence of continuous functions $h_{n}:[0,1] \rightarrow \mathbb{R}$, such that $h_{n}(x) \longrightarrow 0$ for all $x \in[0,1], \int_{\mathbb{R}} h_{n} d m \longrightarrow 1$ and $\left\|h_{n}\right\|_{\infty} \longrightarrow \infty$, as $n \rightarrow \infty$.
