Problem Set 1

January 17, 2018.

1. Let X be a non-empty finite set, and let \mathcal{A} be a σ-algebra on X. Consider a relation on X :

$$
x \sim y \Longleftrightarrow[x \in A \Leftrightarrow y \in A, \text { for all } A \in \mathcal{A}] .
$$

(i) Show that the above is an equivalence relation on X.
(ii) Show that, for every $x \in X$, its equivalence class satisfies $[x]_{\sim}=\bigcap\{A \in \mathcal{A}: x \in A\}$ and $[x]_{\sim} \in \mathcal{A}$.
(iii) Let E_{1}, \ldots, E_{k} be all the distinct equivalence classes in X modulo \sim. Show that \mathcal{A} consists precisely of the empty set and unions of all sub-collections of $\left\{E_{1}, \ldots, E_{k}\right\}$ (i.e., $A \in \mathcal{A}$ iff $A=\varnothing$ or there exist $1 \leq l \leq k$ and $\left\{i_{1}, \ldots, i_{l}\right\} \subset\{1, \ldots, k\}$ such that $\left.A=E_{i_{1}} \cup \cdots \cup E_{i_{l}}\right)$.
2. Exercises 2.1 and 2.3-2.8 from the text.
3. Exercises 3.1, 3.2 and 3.4-3.7 from the text.

