Solutions for Problem Set 2 MATH 4122/9022

Octavian Mitrea

February 11, 2018
3.8 By the definition of σ-algebra, \mathcal{B} contains all sets of the form $A \cup N$, where $A \in \mathcal{A}$ and $N \in \mathcal{N}$. Therefore, it suffices to show that the family $\mathcal{F}=\{A \cup N: A \in \mathcal{A}, N \in \mathcal{N}\}$ is itself a σ-algebra. Clearly, $\varnothing \in \mathcal{F}$. Given $A \cup N \in \mathcal{F}$, let $C \in \mathcal{A}$ be such that $N \subset C$ and $\mu(C)=0$. Then, $C \backslash N$ (and all its subsets) are in \mathcal{N}, and $N^{c}=C^{c} \cup(C \backslash N)$, hence $(A \cup N)^{c}=A^{c} \cap N^{c}=\left(A^{c} \cap C^{c}\right) \cup\left(A^{c} \cap(C \backslash N)\right) \in \mathcal{F}$. Given $\left\{A_{i} \cup N_{i}\right\}_{i=1}^{\infty} \subset \mathcal{F}$, let $C_{i} \in \mathcal{A}$ be such that $N_{i} \subset C_{i}$ and $\mu\left(C_{i}\right)=0$, for all i. Then, $\bigcup_{i}\left(A_{i} \cup N_{i}\right)=\bigcup_{i} A_{i} \cup \bigcup_{i} N_{i} \in \mathcal{F}$, since $\bigcup_{i} N_{i} \subset \bigcup_{i} C_{i}$ and $\mu\left(\bigcup_{i} C_{i}\right) \leq \sum_{i} \mu\left(C_{i}\right)=0$.
The rest of the statements are straightforward, provided $\bar{\mu}$ is well defined. Suppose then that $B=A_{1} \cup N_{1}=A_{2} \cup N_{2}$, where $A_{1}, A_{2} \in \mathcal{A}, N_{1} \subset$ $C_{1}, N_{2} \subset C_{2}, C_{1}, C_{2} \in \mathcal{A}, \mu\left(C_{1}\right)=\mu\left(C_{2}\right)=0$. Then, $A_{1} \cup C_{1} \cup C_{2}=$ $A_{2} \cup C_{1} \cup C_{2}$, so $\mu\left(A_{1}\right) \leq \mu\left(A_{1} \cup C_{1} \cup C_{2}\right)=\mu\left(A_{2} \cup C_{1} \cup C_{2}\right) \leq \mu\left(A_{2}\right)+$ $\mu\left(C_{1}\right)+\mu\left(C_{2}\right)=\mu\left(A_{2}\right)$. Similarly, $\mu\left(A_{2}\right) \leq \mu\left(A_{1}\right)$, so $\mu\left(A_{1}\right)=\mu\left(A_{2}\right)$, as required.
3.9 For every $k \in \mathbb{Z}_{+}$, let $X_{k}:=(-k, k), \mathcal{C}_{k}:=\left\{A \in \mathcal{B} \mid A \subset X_{k}, m(A)=\right.$ $n(A)\}$ and let \mathcal{A}_{k} be the algebra generated by the open intervals in X_{k}. Then, \mathcal{A} is the collection of all possible iterations of finite unions and intersections of open intervals and their complements in X_{k}. Since $m((-k, k))=n((-k, k))<\infty$, then, for any $-k \leq a<b \leq k, m\left(X_{k} \backslash\right.$ $(a, b))=m((-k, k))-m((a, b))=n((-k, k))-n((a, b))=n\left(X_{k} \backslash(a, b)\right)$. It follows that $\mathcal{A}_{k} \subset \mathcal{C}_{k}$. It is straightforward to show that \mathcal{C}_{k} is a monotone class, and hence $\mathcal{M}\left(\mathcal{A}_{k}\right) \subset \mathcal{C}_{k}$ (where $\mathcal{M}(C)$ denotes the monotone class generated by C). Then, by the Monotone Class Theorem, $\sigma\left(\mathcal{A}_{k}\right)=\mathcal{M}\left(\mathcal{A}_{k}\right) \subset \mathcal{C}_{k}$. But $\sigma\left(\mathcal{A}_{k}\right)=\mathcal{B} \cap \mathcal{P}\left(X_{k}\right)$, so $\mathcal{C}_{k}=\mathcal{B} \cap \mathcal{P}\left(X_{k}\right)$. Let now $A \in \mathcal{B}$ be arbitrary. Then, for every $k \in \mathbb{Z}_{+}, A \cap X_{k} \in \mathcal{C}_{k}$ and hence

$$
m(A)=\lim _{k \rightarrow \infty} m\left(A \cap X_{k}\right)=\lim _{k \rightarrow \infty} n\left(A \cap X_{k}\right)=n(A)
$$

3.10 For the σ-finite case, let $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ be our measurable space and consider m to be the counting measure and $n:=2 m$. Both m and n are σ-finite measures, $m=n$ on $\mathcal{C}:=\{A \subset \mathbb{N} \mid A$ is infinite $\}, \sigma(\mathcal{C})=\mathcal{P}(\mathbb{N})$, but m and n do not agree on finite subsets of \mathbb{N}, so the answer is NO. For the
finite case, let $X:=\{1,2,3\}, \mathcal{A}:=\{\varnothing,\{1\},\{2,3\}, X\}$. The pair (X, \mathcal{A}) is clearly a σ-algebra. Let m be the counting measure, and define

$$
n(A)= \begin{cases}0, & A=\varnothing \\ 1, & A=\{1\} \\ 3, & A=\{2,3\} \\ 4, & A=X\end{cases}
$$

Both m and n are finite measures, $m(\{1\})=n(\{1\}), \sigma(\{1\})=\mathcal{A}$, but $m(\{2,3\}) \neq n(\{2,3\})$, so the answer is again NO.
4.3 Clearly, $\mu^{*}(\varnothing)=0$ and μ^{*} is monotone. To show the subadditivity, let $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathcal{P}(X)$ be arbitrary. Without loss of generality, we may assume that $\mu^{*}\left(\cup_{i=1}^{\infty} A_{i}\right)<\infty$. Let then $\varepsilon>0$ be arbitrary, and let $C_{i} \in \mathcal{A}$ be such that $\mu\left(C_{i}\right) \leq \mu^{*}\left(A_{i}\right)+\frac{\varepsilon}{2^{i}}$, for $i \geq 1$. Then,

$$
\begin{aligned}
\mu^{*}\left(\cup_{i=1}^{\infty} A_{i}\right)=\inf \left\{\mu(B) \mid\left(\cup_{i=1}^{\infty} A_{i}\right) \subset B, B\right. & \in \mathcal{A}\} \leq \mu\left(\cup_{i=1}^{\infty} C_{i}\right) \\
\leq & \sum_{i=1}^{\infty} \mu\left(C_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)+\varepsilon
\end{aligned}
$$

Since ε was arbitrary, we get that $\mu^{*}\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)$, which proves that μ^{*} is an outer measure.
Next, let $A \in \mathcal{A}$ and let $Z \in \mathcal{P}(X)$ be such that $\mu^{*}(Z)<\infty$. Note that, for arbitrary $\varepsilon>0$, there exists $B \in \mathcal{A}$ such that $Z \subset B$ and $\mu^{*}(Z)+\varepsilon \geq \mu^{*}(B)=\mu(B)=\mu\left((B \cap A) \cup\left(B \cap A^{c}\right)\right)=\mu(B \cap A)+$ $\mu\left(B \cap A^{c}\right) \geq \mu(Z \cap A)+\mu\left(Z \cap A^{c}\right)$, where the last inequality follows from the fact that $Z \subset B$. Since this is true for all $\varepsilon>0$, it follows that $\mu^{*}(Z) \geq \mu(Z \cap A)+\mu\left(Z \cap A^{c}\right)$. Lastly, it is immediate that $\mu^{*}(A)=\mu(A)$ if $A \in \mathcal{A}$.
$4.15(\Rightarrow)$ Since A is μ^{*}-measurable, $\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)$, for all $E \subset X$. In particular, for $E=X$ we get the desired formula, since $\mu^{*}(X)=l(X)$.
(\Leftarrow) Let \mathcal{M} denote the σ-algebra of μ^{*}-measurable sets. Suppose that $A \subset X$ satisfies $\mu^{*}(A)+\mu^{*}\left(A^{c}\right)=l(X)$. By regularity of μ^{*}, we can choose $B, C \in \mathcal{M}$ such that $A \subset B, A^{c} \subset C, \mu^{*}(A)=\mu^{*}(B)$, and $\mu^{*}\left(A^{c}\right)=$ $\mu^{*}(C)$. Then, $\mu^{*}(B)+\mu^{*}(C)=\mu^{*}(A)+\mu^{*}\left(A^{c}\right)=l(X)$. Moreover, since $B \cup C=X$ and $\left.\mu^{*}\right|_{\mathcal{M}}$ is a measure, we have $\mu^{*}(B \backslash C)+\mu^{*}(C)=$ $\mu^{*}(B \cup C)=l(X)=\mu^{*}(B)+\mu^{*}(C)$, hence $\mu^{*}(B \backslash C)=\mu^{*}(B)$. Similarly, $\mu^{*}(C \backslash B)=\mu^{*}(C)$, and consequently, $\mu^{*}(B \cap C)=0$.
Let now $E \subset X$ and $\varepsilon>0$ be arbitrary. Let $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathcal{A}$ be any family
such that $E \subset \bigcup_{i} A_{i}$ and $\sum_{i=1}^{\infty} l\left(A_{i}\right) \leq \mu^{*}(E)+\varepsilon$. Then,

$$
\begin{aligned}
& \mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \leq \mu^{*}(E \cap B)+\mu^{*}(E \cap C) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i} \cap B\right)+\sum_{i=1}^{\infty} \mu^{*}\left(A_{i} \cap C\right) \\
= & \sum_{i=1}^{\infty}\left[\mu^{*}\left(A_{i} \cap(B \backslash C)\right)+\mu^{*}\left(A_{i} \cap(B \cap C)\right)\right]+\sum_{i=1}^{\infty}[\mu^{*}\left(A_{i} \cap(C \backslash B)\right)+\underbrace{\mu^{*}\left(A_{i} \cap(B \cap C)\right)}_{=0}] \\
= & \sum_{i=1}^{\infty}\left[\mu^{*}\left(A_{i} \cap(B \backslash C)\right)+\mu^{*}\left(A_{i} \cap(B \cap C)\right)+\mu^{*}\left(A_{i} \cap(C \backslash B)\right)\right]=\sum_{i=1}^{\infty} l\left(A_{i}\right) \leq \mu^{*}(E)+\varepsilon .
\end{aligned}
$$

Since ε was arbitrary, it follows that $\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \leq \mu^{*}(E)$.
Problem $4(\mathrm{a})(\Rightarrow)$ The Caratheodory construction implies that $\left(\alpha_{c}\right)^{0}$ is regular, hence α is regular. (\Leftarrow) Let \mathcal{M} denote the σ-algebra of α-measurable sets. For $Y \in \mathcal{P}(X)$, define $S_{Y}=\{A \in \mathcal{M}: Y \subset A\}$. Then, $\left(\alpha_{c}\right)^{0}(Y)=\inf \left\{\alpha(A) \mid A \in S_{Y}\right\}$. By monotonicity, $\alpha(Y) \leq \alpha(A)$, for every $A \supset Y$, so $\alpha(Y) \leq\left(\alpha_{c}\right)^{0}(Y)$. On the other hand, since α is regular, there exists $B \in S_{Y}$ such that $\alpha(Y)=\alpha(B)$, hence $\alpha(Y) \geq \inf \left\{\alpha(A) \mid A \in S_{Y}\right\}$. The result follows.
(b) (\Rightarrow) Trivial, because μ^{0} is regular. (\Leftarrow) We have $\mu^{0}=\left(\gamma_{c}\right)^{0}$ and by (a), since γ is regular, it follows that $\left(\gamma_{c}\right)^{0}=\gamma$, hence the result.
(c) Let \mathcal{M} be the σ-algebra on which μ is defined, and let \mathcal{M}^{0} be the σ-algebra of μ^{0}-measurable sets. By the Caratheodory Extension Theorem, μ^{0} is a regular outer measure which coincides with μ on \mathcal{M}, and $\mathcal{M}^{0} \supset \mathcal{M}$. To complete the proof, it thus remains to show that $\mathcal{M}^{0} \subset \mathcal{M}$ (i.e., that the domains of μ and $\left(\mu^{0}\right)_{c}$ coincide).
Pick $A \in \mathcal{M}^{0}$. Suppose first that $\mu^{0}(X)=\mu(X)<\infty$. As usual, for every $k \in \mathbb{Z}_{+}$, we can choose a collection $\left\{A_{i k}\right\}_{i=1}^{\infty} \subset \mathcal{M}$ such that $A \subset \bigcup_{i} A_{i k}$ and $\sum_{i} \mu\left(A_{i k}\right) \leq \mu^{0}(A)+\frac{1}{k}$. Then, setting $B_{k}=$ $\bigcup_{k} A_{i k}$ for all k, and $B=\bigcap_{k} B_{k}$, we get that $B \in \mathcal{M}, B \supset A$ and $\mu(B)=\lim _{k \rightarrow \infty} \mu\left(B_{k}\right)=\mu^{0}(A)$, where the first equality follows from $\mu\left(B_{1}\right) \leq \mu^{0}(A) \leq \mu^{0}(X)<\infty$. Now, the set $C:=B \backslash A$ is μ^{0} measurable and a μ^{0}-null set, hence also a μ-null set (by definition of $\left.\mu^{0}\right)$. By completeness of μ, we have $C \in \mathcal{M}$, and hence $A=B \cup C \in$ \mathcal{M}.
In the general case, by σ-finiteness of μ, we can write $X=\bigcup_{k} X_{k}$ for some $\left\{X_{k}\right\}_{k} \subset \mathcal{M}$ with $\mu\left(X_{k}\right)<\infty$ for each k. Set $A_{k}:=A \cap X_{k}$. Then, for all $k, A_{k} \in \mathcal{M}$ by the above argument, and hence $A=$ $\bigcup_{k} A_{k} \in \mathcal{M}$.
(d) A direct consequence of (a) and the fact that μ^{0} is regular.

