Solutions for Problem Set 3 MATH 4122/9022

Octavian Mitrea

February 15, 2018
4.2 Let $A \subset \mathbb{R}^{n}, n \in \mathbb{Z}_{+}$and let $\varepsilon>0$. We show first that there exist $G, F \subset \mathbb{R}$, where G is open and F is closed, such that $F \subset A \subset G$ and

$$
\begin{equation*}
m(G \backslash A)<\varepsilon / 2, m(A \backslash F)<\varepsilon / 2 . \tag{0.1}
\end{equation*}
$$

We know that $m(A)=\inf \left\{m(U) \mid A \subset U, U\right.$ open in $\left.\mathbb{R}^{n}\right\}$, hence there exists an open set $G \subset \mathbb{R}^{n}$ such that $A \subset G$ and $m(G)<m(A)+\varepsilon / 2$. Since $m(G)<$ ∞, we have $m(G \backslash A)=m(G)-m(G \cap A)=m(G)-m(A)<\varepsilon / 2$, which proves the first part of (0.1). Next, since A^{c} is also Lebesgue-measurable, by what we proved above, there exists an open set $G \subset \mathbb{R}^{n}, A^{c} \subset G$, such that $m\left(G \backslash A^{c}\right)<\varepsilon / 2$. Then $F:=G^{c}$ is closed, $F \subset A$ and the second part of (0.1) is satisfied. So, since $G \backslash F=(G \backslash A) \cup(A \backslash F)$ and $(G \backslash A) \cap(A \backslash F)=\varnothing$, we have $m(G \backslash F)=m(G \backslash A)+m(A \backslash F)<\varepsilon$.
4.5 Let $A \subset \mathbb{R}^{n}$ be Lebesgue-measurable. By definition, $m(A)=\inf \left\{\sum_{k=0}^{\infty} m\left(R_{k}\right) \mid A \subset\right.$ $\cup_{k=0}^{\infty} R_{k}$, where all R_{k} are rectangles in $\left.\mathbb{R}^{n}\right\}$. It is clear that $m\left(R_{k}\right)$ is invariant under translations, $m\left(R_{k}\right)=m\left(R_{k}+x\right), \forall k \geq 0$, therefore $m(A+x)=m(A)$. Next, note that if R is a rectangle in \mathbb{R}^{n} then $m(c R)=c^{n} m(R), \forall c>0$, because we stretch each of the n sides of R by the same factor of c. This implies the result.
4.6 (1) It is straightforward to see that $B=\bigcap_{N \geq 1} \bigcup_{n \geq N} A_{n}$. Therefore, B is Lebesgue measurable as a countable intersection of countable unions of Lebesgue measurable sets.
(2) For every $k \in \mathbb{Z}_{+}$, let $B_{k}=\bigcap_{N=1}^{k} \bigcup_{n \geq N} A_{n}$. Then, $\left\{B_{k}\right\}_{k=1}^{\infty}$ forms a decreasing sequence such that $B_{k} \downarrow B$. Since $B_{k} \subset[0,1]$, we have that $m\left(B_{k}\right)<\infty$ for all $k \geq 1$, and hence $m(B)=\lim _{k \rightarrow \infty} m\left(B_{k}\right)$. By construction, $A_{k} \subset B_{k}$ for all $k \geq 1$, hence $m\left(B_{k}\right)>\delta$, which implies that $m(B) \geq \delta$.
(3) Let $\varepsilon>0$ be arbitrary. Since the series $\sum_{n=1}^{\infty} m\left(A_{n}\right)$ of non-negative real numbers is convergent, one can choose $N \in \mathbb{N}$ such that $\sum_{n=N}^{\infty} m\left(A_{n}\right)<\varepsilon$.

Since every point $x \in B$ belongs to infinitely many of the A_{n}, there exists some $n(x)>N$ such that $x \in A_{n(x)}$, hence $B \subset \cup_{n \geq N} A_{n}$. It follows that $m(B) \leq m\left(\bigcup_{n \geq N} A_{n}\right) \leq \sum_{n=N}^{\infty} m\left(A_{n}\right)<\varepsilon$, which proves the statement, because the ε was arbitrary.
(4) Define $A_{n}:=[0,1 / n], n \in \mathbb{Z}_{+}$. Then all A_{n} are Lebesgue measurable subsets of [0,1] of measure $m\left(A_{n}\right)=1 / n>0$, so $\sum_{n=1}^{\infty} m\left(A_{n}\right)=\sum_{n=1}^{\infty} 1 / n=\infty$. On the other hand, since $1 / n \rightarrow 0$, it follows that the only point in $[0,1]$ that is in infinitely many sets A_{n} is 0 , hence $B=\{0\}$ and $m(B)=0$.
4.7 Let $\varepsilon \in(0,1)$ and define $E:=(0, \varepsilon) \cup Q_{[\varepsilon, 1]}$, where $Q_{[\varepsilon, 1]}$ is the set of all rational numbers in $[\varepsilon, 1]$. Then, the closure of E is $[0,1]$, because $Q_{[\varepsilon, 1]}$ is dense in $[\varepsilon, 1]$ and $m(E)=m((0, \varepsilon))+m\left(Q_{[\varepsilon, 0]}\right)=\varepsilon$, because $(0, \varepsilon)$ and $Q_{[\varepsilon, 0]}$ are disjoint and $Q_{[\varepsilon, 0]}$ is a null set.
4.8 Let $F \subset[0,1]$ be closed and define $Q_{F}:=\left\{q_{1}, q_{2}, \ldots\right\}$ to be an enumeration of the rational numbers in F, which of course satisfies $\bar{Q}_{F}=F$. For every Borel set $B \subset[0,1]$, define

$$
\mu(B)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \delta_{q_{n}}(B),
$$

where δ_{x} represents the point mass measure corresponding to $x \in \mathbb{R}$. It is immediate to show that μ is a measure on $[0,1]$. For every Borel set $B \subset[0,1]$ we have $\mu(B) \leq \mu([0,1])=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$, hence μ is finite. Also, $\mu\left(F^{c}\right)=$ $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \delta_{q_{n}}\left(F^{c}\right)=0$. Because Q_{F} is dense in F, then F is the smallest set (with respect to inclusion) with the above properties. Indeed, if $F^{\prime} \subset F$ is a subset of F satisfying the same properties, then there is an open subset $U \subset F \backslash F^{\prime}$ and a rational number $q \in U$. But $\mu(\{q\})>0$, which is a contradiction.
4.9 Consider the elements of $[0,1]$ in their ternary expansion $a=0 . a_{1} a_{2} \ldots$, where $a_{j} \in\{0,1,2\}, \forall j \in \mathbb{N}$. For all $k \in \mathbb{N}$ define $A_{k}:=\left\{0 . a_{1} a_{2} \ldots \mid a_{k}=1\right\}$. For all $k \in \mathbb{N}, A_{k}$ is a union of 3^{k-1} intervals of length $\frac{1}{3^{k}}$ each. Hence A_{k} is Lebesgue measurable and $m\left(A_{k}\right)=\frac{1}{3}>0$, for all $k \in \mathbb{N}$. For any $j \neq k$, the symmetric difference of A_{j} and A_{k} is the union of some nontrivial intervals, so $m\left(A_{j} \Delta A_{k}\right)>0$. Lastly, assuming w.l.o.g. that $j<k$, the intersection $A_{j} \cap A_{k}$ consists of disjoint intervals whose total length is $\frac{1}{3}$ of $m\left(A_{j}\right)$, hence $m\left(A_{j} \cap A_{k}\right)=\frac{1}{3} m\left(A_{j}\right)=m\left(A_{k}\right) m\left(A_{j}\right)$.
4.10 We prove this by contradiction and show that if $m(A)>0$ then there exists an interval I for which $m(A \cap I)>(1-\varepsilon) m(I)$. Let us assume first that the
result is true for Borel sets of finite measure. Then, if $A \subset \mathbb{R}$ is a Borel set such that $m(A)=\infty$, since m is σ-finite, there exists a Borel set $A^{\prime} \subset A$ such that $m\left(A^{\prime}\right)<\infty$. By applying the result for the finite case, the statement follows. Suppose now that $m(A)<\infty$ and let $\varepsilon>0$. By the first part of the proof of Exercise 4, there exists an open set $U \subset \mathbb{R}, A \subset U$, such that $m(U)<m(A)+$ $\frac{\varepsilon}{1-\varepsilon} m(A)=\frac{1}{1-\varepsilon} m(A)<\infty$. Since U is open, there exists a family of pairwise disjoint open intervals $\left\{I_{n}\right\}_{n=1}^{\infty}$ such that $U=\cup_{n=1}^{\infty} I_{n}$, so $m(U)=\sum_{n=1}^{\infty} m\left(I_{n}\right)$. Since $A \subset U$, we have $m(A)=m(A \cap U)=m\left(A \cap \cup_{n=1}^{\infty} I_{n}\right)=\sum_{n=1}^{\infty} m\left(A \cap I_{n}\right)$. Using all of the above, we get that $\sum_{n=1}^{\infty} m\left(I_{n}\right)<\frac{1}{1-\varepsilon} \sum_{n=1}^{\infty} m\left(A \cap I_{n}\right)$. This means that there exists $n_{0} \in \mathbb{N}$ such that $m\left(I_{n_{0}}\right)<\frac{1}{1-\varepsilon} m\left(A \cap I_{n_{0}}\right)$, which is in contradiction with the hypothesis of our statement.
4.11 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given as $f(x)=m((A+x) \cap A)$. If $x_{n} \rightarrow x$ then clearly $A+x_{n} \rightarrow A+x$, hence $A_{n}:=\left(A+x_{n}\right) \cap A \rightarrow(A+x) \cap A$. Suppose first that $x>0$. It is easy to see that, if $x_{n} \rightarrow x^{-}$we have $A_{n} \downarrow(A+x) \cap A$ and if $x_{n} \rightarrow x^{+}$, then $A_{n} \uparrow(A+x) \cap A$. By Proposition 3.5, it follows that $m\left(A_{n}\right) \rightarrow m((A+x) \cap A)$ which proves that f is continuous in ($0, \infty$). Similar steps show that f is continuous in $(-\infty, 0)$ and at 0 , hence f is continuous in \mathbb{R}. Since $f(0)=m(A)>0$, by continuity, there exists an interval $0 \in I \subset \mathbb{R}$ such that $f(x)=m((A+x) \cap A)>0$, for all $x \in I$. It follows that for every $x \in I$, the set $(A+x) \cap A$ is nonempty. If, for a fixed $x \in I$, we choose an element $a \in(A+x) \cap A$, then $a=b+x$ for some $b \in A$ and, since also $a \in A$, it follows that $x \in B$. This shows that $0 \in I \subset B$, which proves the statement.
4.12 (This follows Rudin's proof published in The American Mathematical Monthly, Vol 90 No.1, 1983) Let $I=[0,1]$ and let CTDP stand for a compact, totally disconnected subset of I of positive measure. Let $\left\{I_{n}\right\}$ be an enumeration of all closed intervals in I with rational endpoints.

Lemma 0.1. Every closed interval I contains a CTDP.
Proof of Lemma. We do it for $I=[0,1]$; the procedure can be adapted to any closed interval I. Let $Q_{[0,1]}:=\left\{q_{1}, q_{2}, \ldots\right\}$ be an enumeration of $\mathbb{Q} \cap[0,1]$. For each $q_{k} \in Q_{[0,1]}$, put $U_{k}:=\left(q_{k}-\frac{1}{2^{k+2}}, q_{k}+\frac{1}{2^{k+2}}\right)$ and let $U:=\cup_{k=1}^{\infty} U_{k}$, $K:=[0,1] \backslash U$. Since U is open and $[0,1]$ is compact, K is compact. Also, $m(U) \leq \sum_{k=1}^{\infty} m\left(U_{k}\right)=\sum_{k=1}^{\infty} \frac{1}{2^{k+1}}=\frac{1}{2}$. This means that $m(K)=m([0,1])-$ $m(U \cap[0,1]) \geq \frac{1}{2}>0$.

Continuing with the solution, construct sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$ of CTDP's by using the above lemma, as follows: start with disjoint CTDP's $A_{1}, B_{1} \subset I_{1}$ and
let $C_{2}:=A_{1} \cup B_{2}$, which is again CTDP. Then, $I_{2} \backslash C_{2}$ contains a nonempty closed interval (because C_{2} is totally disconnected), say J, which again contains two disjoint CTDP's, A_{2}, B_{2}. Continue the process for all $n \in \mathbb{N}$ and let $A:=$ $\cup_{n=1}^{\infty} A_{n}$. If $\emptyset \neq U \subset I$ is open, then there exists $n \in \mathbb{N}$ such that $I_{n} \subset U$, hence $A_{n}, B_{n} \subset U$. So, $0<m\left(A_{n}\right) \leq m(A \cap U)<m(A \cap U)+m\left(B_{n}\right) \leq m(U)$, where the last inequality follows from the fact that $A \cap B_{n}=\emptyset$, and this concludes the proof.

