Solutions for Problem Set 4 MATH 4122/9022

Octavian Mitrea

February 22, 2018
4.13 Note that N is a Vitali set, same as the set which is the subject of the last exercise in this problem set. Suppose $m(A)>0$ and observe that for every $p \neq q \in \mathbb{Q} \cap[0,1]$ the sets $p+A \subset p+N$ and $q+A \subset q+N$ are disjoint because $p+N$ and $q+N$ are (recall the construction of a Vitali set). On the one hand, $r+A \subset[0,2]$ for all $r \in[0,1]$, hence $m\left(\bigcup_{p \in \mathbb{Q} \cap[0,1]}(p+A)\right) \leq 2$. On the other hand, $m(r+A)=m(A)$ for all $r \in[0,1]$ so $m\left(\bigcup_{p \in \mathbb{Q} \cap[0,1]}(p+A)\right)=\sum_{p \in \mathbb{Q} \cap[0,1]} m(p+A)=$ $\sum_{p \in \mathbb{Q} \cap[0,1]} m(A)=\infty$ because all sets under the union are pairwise disjoint and we also assumed $m(A)>0$. This leads to a contradiction.
4.14 Extend the construction of Vitali sets to the real line: for any $x, y \in \mathbb{R}$, let $x \sim y$ be the equivalence relation defined by the condition $x-y \in \mathbb{Q}$ and let V be a set given by selecting exactly one representative from every class of equivalence. Then, $\mathbb{R}=\cup_{q \in \mathbb{Q}}(q+V)$ where all the sets under the union symbol are pairwise disjoint. It follows that $A=\cup_{q \in \mathbb{Q}}[A \cap(q+V)]$. If there exists $q \in \mathbb{Q}$ such that $A \cap(q+A)$ is non-measurable then we are done. So, suppose that all $A_{q}:=A \cap(q+V)$ are measurable, $q \in \mathbb{Q}$. Observe that $A_{q}-A_{q} \subset V-V$ and $(V-V) \cap(\mathbb{Q} \backslash\{0\})=\varnothing$, because any two different elements of V are not equivalent. It follows that $A_{q}-A_{q}$ does not contain any open interval centered at the origin. Since A_{q} is measurable, by Steinhaus theorem (Exercise 4.11, Problem Set 3) we have $m\left(A_{q}\right)=0$, for all $q \in \mathbb{Q}$. It follows that $0<m(A)=m\left(\cup_{q \in \mathbb{Q}} A_{q}\right)=\sum_{q \in \mathbb{Q}} m\left(A_{q}\right)=0$, which is a contradiction. This proves that there must be a $q \in \mathbb{Q}$ such that $A \cap(q+A)$ is non-measurable, which proves the statement.

Remark 0.1. The version of Steinhaus theorem presented in Exercise 4.11 in the textbook is stated for A being Borel measurable. In fact the theorem is true for any Lebesgue measurable set A. The proof included in the posted solutions for Problem Set 3 was done for this more general case.
4.15 Addressed in the solutions for Problem Set 2.
4.16 (1) Let $X=\mathbb{R}$ and define

$$
\mu^{*}(A)= \begin{cases}0, & A \text { is countable } \\ 1, & A \text { and } A^{c} \text { are uncountable } \\ 2, & A^{c} \text { is countable }\end{cases}
$$

It is easy to see that μ^{*} is well defined and the verification of μ^{*} being an outer measure is a just a routine exercise. For all $n \in \mathbb{Z}_{+}$define $A_{n}:=$ $[-n, n], B:=[n, \infty)$. Then $A_{n} \uparrow \mathbb{R}$ and $B_{n} \downarrow \varnothing$. Thus, $\mu^{*}\left(A_{n}\right)=1, \forall n \in \mathbb{Z}_{+}$ but $\mu^{*}(\mathbb{R})=2$ because its complement is \varnothing which is countable. Hence $\mu^{*}\left(A_{n}\right)$ does not converge to $\mu^{*}(\mathbb{R})$. Also, $\mu^{*}\left(B_{n}\right)=1$ but $\mu^{*}(\varnothing)=0$ which proves that $\mu^{*}\left(B_{n}\right)$ does not converge to $\mu^{*}(\varnothing)$.
(2) First we prove that μ^{*} is regular, i.e. for every $A \subset X$ there exists $B \in \mathcal{A}$ such that $A \subset B$ and $\mu^{*}(A)=\mu^{*}(B)$. By the definition of μ^{*}, for every $n>0$, there exists $B_{n} \in \mathcal{A}$ s.t. $A \subset B_{n}$ and $\mu\left(B_{n}\right) \leq \mu^{*}(A)+1 / n$. Define $B:=\cap_{n} B_{n}$, which is μ-measurable, so $\mu^{*}(B) \leq \mu^{*}\left(B_{n}\right) \leq \mu^{*}(A)+1 / n, \forall n>$ 0 , since μ^{*} restricts to μ on \mathcal{A}. This means that $\mu^{*}(B) \leq \mu^{*}(A)$. On the other hand, $A \subset B_{n}$ for all $n>0$, so $A \subset B$, hence $\mu^{*}(A) \leq \mu^{*}(B)$ which proves that in fact $\mu^{*}(A)=\mu^{*}(B)$.
To prove the statement, first note that $\mu^{*}(A) \geq \mu^{*}\left(A_{n}\right)$, hence $\lim _{n \rightarrow \infty} \mu^{*}\left(A_{n}\right)$ exists and $\mu^{*}(A) \geq \lim _{n \rightarrow \infty} \mu^{*}\left(A_{n}\right)$. Therefore, it suffices to show the converse inequality. Let $B_{n} \in \mathcal{A}$ be the sets that result from the regularity of μ^{*} : $A_{n} \subset B_{n}, \mu\left(B_{n}\right)=\mu^{*}\left(A_{n}\right)$, for all $n>0$. Define the sets $C_{n}:=\bigcap_{k=n}^{\infty} B_{k}$, for all $n>0$, which satisfy $A_{n} \subset C_{n}$ and $C_{n} \subset C_{n+1}$, for all $n>0$. Let $C:=$ $\bigcup_{n=1}^{\infty} C_{n}$. Clearly, $A \subset C$. It follows that, for every $n>0, \mu^{*}\left(A_{n}\right)=\mu\left(B_{n}\right) \geq$ $\mu\left(C_{n}\right)$ and by taking the limit, $\lim _{n \rightarrow \infty} \mu^{*}\left(A_{n}\right) \geq \lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\mu(C) \geq \mu^{*}(A)$, which proves the statement.
4.17 We have $B=\bigcup_{x \in A}[x-1, x+1]=\left(\bigcup_{x \in A}(x-1, x+1)\right) \cup\left(\bigcup_{x \in A}\{x-1\}\right) \cup$ $\left(\bigcup_{x \in A}\{x+1\}\right)$. The set $\bigcup_{x \in A}(x-1, x+1)$ is open, hence Lebesgue-measurable. Also, it is easy to check that $\bigcup_{x \in A}\{x-1\}=-1+A$ and $\bigcup_{x \in A}\{x+1\}=1+A$, which are both Lebesgue-measurable. It follows that B is measurable as the union of three measurable sets.
4.18 To prove the statement is the same as proving that, if $m(A)=0$, then there exists $c \in \mathbb{R}$ such that $(A+c) \cap \mathbb{Q}=\varnothing$. Let $B:=\bigcup_{q \in \mathbb{Q}}(q+A)$, which has measure 0 , since $m(q+A)=m(A)=0$, for all $q \in \mathbb{Q}$. Then, by construction, B is invariant with respect to translations by rationals, i.e. $B=p+B$ for all $p \in \mathbb{Q}$.
Next, we show that, for any $r \in \mathbb{R},(r+B) \cap \mathbb{Q} \neq \varnothing$ iff $\mathbb{Q} \subset r+B$. Again, one direction is trivial, so we prove the other. By hypothesis, there exists $b \in B$ s.t. $q:=r+b \in \mathbb{Q}$. Let $p \in \mathbb{Q}$ be arbitrarily fixed. Then, $p=(p-q)+q=$ $(p-q)+r+b=r+(p-q)+b \in r+(p-q)+B=r+B$. Since p was arbitrarily fixed, it follows that $\mathbb{Q} \subset r+B$.

To end the proof, note that there exists $r_{0} \in \mathbb{R}$ s.t. $0 \notin r_{0}+B$, becuse otherwise, for every $r \in \mathbb{R}$ we would have $-r \in B$, i.e. $\mathbb{R} \subset B$ which is impossible, since $m(B)=0$. So, $\mathbb{Q} \not \subset r_{0}+B$, hence $\left(r_{0}+B\right) \cap \mathbb{Q}=\varnothing$, which proves the result.
2. (a) Let V be a Vitali set and suppose that $m^{*}(V)=0$. By the construction of V, as a Vitali set, for every $r \in[0,1]$ there exists $v \in V$ s.t. $r \in v+(\mathbb{Q} \cap[0,1])$, i.e. $r=v+q$ for some $q \in \mathbb{Q} \cap[0,1]$, hence $r \in q+V$. It follows that $[0,1] \subset \bigcup_{q \in \mathbb{Q} \cap[0,1]}(q+V)$. So,

$$
\begin{aligned}
& 1=m([0,1])=m^{*}([0,1]) \leq m^{*}\left(\bigcup_{q \in \mathbb{Q} \cap[0,1]}(q+V)\right) \leq \\
& \sum_{q \in \mathbb{Q} \cap[0,1]} m^{*}(q+V)=\sum_{q \in \mathbb{Q} \cap[0,1]} m^{*}(V)=0,
\end{aligned}
$$

which is a contradiction.
(b) If $\varepsilon>1$ then, trivially $m^{*}(V) \leq m^{*}([0,1])=m([0,1])=1<\varepsilon$, for any Vitali set $V \subset[0,1]$. Suppose that $0<\varepsilon \leq 1$. Let $W \subset[0,1]$ be a Vitali set. For each $w \in W$ choose $q \in \mathbb{Q}$ s.t. $v:=w-q<\varepsilon$, which is possible since $\mathbb{Q} \cap[0,1]$ is dense in $[0,1]$. The set V of all such v 's is again a Vitali set: $w-v=q \in \mathbb{Q}$, hence $v \sim w$ and, $w_{1} \nsim w_{2}$ implies $v_{1} \nsim v_{2}$, where $v_{i}:=w_{i}-q_{i}, i=1,2$. Since $v<\varepsilon$ for all $v \in V$, we have $V \subset[0, \varepsilon]$, hence $m^{*}(V)<\varepsilon$.

