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4.13 Note that N is a Vitali set, same as the set which is the subject of the last
exercise in this problem set. Suppose m(A) > 0 and observe that for every
p 6= q ∈ Q∩ [0, 1] the sets p+A ⊂ p+N and q+A ⊂ q+N are disjoint because
p+N and q+N are (recall the construction of a Vitali set). On the one hand,

r+A ⊂ [0, 2] for all r ∈ [0, 1], hence m(
⋃

p∈Q∩[0,1]

(p+A)) ≤ 2. On the other hand,

m(r +A) = m(A) for all r ∈ [0, 1] so m(
⋃

p∈Q∩[0,1]

(p+A)) =
∑

p∈Q∩[0,1]

m(p+A) =∑
p∈Q∩[0,1]

m(A) = ∞ because all sets under the union are pairwise disjoint and

we also assumed m(A) > 0. This leads to a contradiction.

4.14 Extend the construction of Vitali sets to the real line: for any x, y ∈ R, let
x ∼ y be the equivalence relation defined by the condition x − y ∈ Q and
let V be a set given by selecting exactly one representative from every class
of equivalence. Then, R = ∪q∈Q(q + V ) where all the sets under the union
symbol are pairwise disjoint. It follows that A = ∪q∈Q [A ∩ (q + V )]. If there
exists q ∈ Q such that A ∩ (q + A) is non-measurable then we are done. So,
suppose that all Aq := A ∩ (q + V ) are measurable, q ∈ Q. Observe that
Aq−Aq ⊂ V −V and (V −V )∩(Q\{0}) = ∅, because any two different elements
of V are not equivalent. It follows that Aq − Aq does not contain any open
interval centered at the origin. Since Aq is measurable, by Steinhaus theorem
(Exercise 4.11, Problem Set 3) we have m(Aq) = 0, for all q ∈ Q. It follows that
0 < m(A) = m(∪q∈QAq) =

∑
q∈Q m(Aq) = 0, which is a contradiction. This

proves that there must be a q ∈ Q such that A ∩ (q + A) is non-measurable,
which proves the statement.

Remark 0.1. The version of Steinhaus theorem presented in Exercise 4.11 in
the textbook is stated for A being Borel measurable. In fact the theorem is true
for any Lebesgue measurable set A. The proof included in the posted solutions
for Problem Set 3 was done for this more general case.
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4.15 Addressed in the solutions for Problem Set 2.

4.16 (1) Let X = R and define

µ∗(A) =


0, A is countable,

1, A and Ac are uncountable,

2, Ac is countable.

It is easy to see that µ∗ is well defined and the verification of µ∗ being
an outer measure is a just a routine exercise. For all n ∈ Z+ define An :=
[−n, n], B := [n,∞). Then An ↑ R and Bn ↓ ∅. Thus, µ∗(An) = 1,∀n ∈ Z+

but µ∗(R) = 2 because its complement is ∅ which is countable. Hence
µ∗(An) does not converge to µ∗(R). Also, µ∗(Bn) = 1 but µ∗(∅) = 0 which
proves that µ∗(Bn) does not converge to µ∗(∅).

(2) First we prove that µ∗ is regular, i.e. for every A ⊂ X there exists B ∈ A
such that A ⊂ B and µ∗(A) = µ∗(B). By the definition of µ∗, for every
n > 0, there exists Bn ∈ A s.t. A ⊂ Bn and µ(Bn) ≤ µ∗(A) + 1/n. Define
B := ∩nBn, which is µ-measurable, so µ∗(B) ≤ µ∗(Bn) ≤ µ∗(A)+1/n,∀n >
0, since µ∗ restricts to µ on A. This means that µ∗(B) ≤ µ∗(A). On the
other hand, A ⊂ Bn for all n > 0, so A ⊂ B, hence µ∗(A) ≤ µ∗(B) which
proves that in fact µ∗(A) = µ∗(B).

To prove the statement, first note that µ∗(A) ≥ µ∗(An), hence lim
n→∞

µ∗(An)

exists and µ∗(A) ≥ lim
n→∞

µ∗(An). Therefore, it suffices to show the converse

inequality. Let Bn ∈ A be the sets that result from the regularity of µ∗:

An ⊂ Bn, µ(Bn) = µ∗(An), for all n > 0. Define the sets Cn :=
∞⋂
k=n

Bk, for

all n > 0, which satisfy An ⊂ Cn and Cn ⊂ Cn+1, for all n > 0. Let C :=
∞⋃
n=1

Cn. Clearly, A ⊂ C. It follows that, for every n > 0, µ∗(An) = µ(Bn) ≥

µ(Cn) and by taking the limit, lim
n→∞

µ∗(An) ≥ lim
n→∞

µ(Cn) = µ(C) ≥ µ∗(A),

which proves the statement.

4.17 We have B =
⋃
x∈A

[x − 1, x + 1] =

(⋃
x∈A

(x− 1, x+ 1)

)
∪

(⋃
x∈A

{x− 1}

)
∪(⋃

x∈A

{x+ 1}

)
. The set

⋃
x∈A

(x− 1, x + 1) is open, hence Lebesgue-measurable.

Also, it is easy to check that
⋃
x∈A

{x − 1} = −1 + A and
⋃
x∈A

{x + 1} = 1 + A,

which are both Lebesgue-measurable. It follows that B is measurable as the
union of three measurable sets.
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4.18 To prove the statement is the same as proving that, if m(A) = 0, then there

exists c ∈ R such that (A + c) ∩ Q = ∅. Let B :=
⋃
q∈Q

(q + A), which has

measure 0, since m(q + A) = m(A) = 0, for all q ∈ Q. Then, by construction,
B is invariant with respect to translations by rationals, i.e. B = p + B for all
p ∈ Q.

Next, we show that, for any r ∈ R, (r+B)∩Q 6= ∅ iff Q ⊂ r+B. Again, one
direction is trivial, so we prove the other. By hypothesis, there exists b ∈ B
s.t. q := r + b ∈ Q. Let p ∈ Q be arbitrarily fixed. Then, p = (p − q) + q =
(p−q)+r+ b = r+(p−q)+ b ∈ r+(p−q)+B = r+B. Since p was arbitrarily
fixed, it follows that Q ⊂ r +B.

To end the proof, note that there exists r0 ∈ R s.t. 0 6∈ r0+B, becuse otherwise,
for every r ∈ R we would have −r ∈ B, i.e. R ⊂ B which is impossible, since
m(B) = 0. So, Q 6⊂ r0 +B, hence (r0 +B) ∩Q = ∅, which proves the result.

2. (a) Let V be a Vitali set and suppose thatm∗(V ) = 0. By the construction of V ,
as a Vitali set, for every r ∈ [0, 1] there exists v ∈ V s.t. r ∈ v+(Q∩ [0, 1]),
i.e. r = v + q for some q ∈ Q ∩ [0, 1], hence r ∈ q + V . It follows that

[0, 1] ⊂
⋃

q∈Q∩[0,1]

(q + V ). So,

1 = m([0, 1]) = m∗([0, 1]) ≤ m∗(
⋃

q∈Q∩[0,1]

(q + V )) ≤

∑
q∈Q∩[0,1]

m∗(q + V ) =
∑

q∈Q∩[0,1]

m∗(V ) = 0 ,

which is a contradiction.

(b) If ε > 1 then, trivially m∗(V ) ≤ m∗([0, 1]) = m([0, 1]) = 1 < ε, for any
Vitali set V ⊂ [0, 1]. Suppose that 0 < ε ≤ 1. Let W ⊂ [0, 1] be a Vitali
set. For each w ∈ W choose q ∈ Q s.t. v := w − q < ε, which is possible
since Q ∩ [0, 1] is dense in [0, 1]. The set V of all such v’s is again a Vitali
set: w − v = q ∈ Q, hence v ∼ w and, w1 6∼ w2 implies v1 6∼ v2, where
vi := wi − qi, i = 1, 2. Since v < ε for all v ∈ V , we have V ⊂ [0, ε], hence
m∗(V ) < ε.
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