Solutions for Problem Set 7 MATH 4122/9022

Octavian Mitrea

March 20, 2018
7.11 First, note that $\log (1+x) \geq x-x^{2} / 2$, for all $x \geq 0$. Indeed, if $g(x):=$ $\log (1+x)-x+x^{2} / 2$ for all $x \geq 0$, then $g(0)=0$ and $g^{\prime}(x)=\frac{x^{2}}{1+x} \geq 0$, hence $g(x) \geq g(0)=0$ for all $x \geq 0$. Then, $\left(1+\frac{x}{n}\right)^{-n}=e^{-n \log (1+x / n)} \leq$ $e^{-n\left(x / n-x^{2} / 2 n^{2}\right)}=e^{\left(-x+x^{2} / 2 n\right)} \leq e^{\left(-x+x^{2} / 2 x\right)} \leq e^{-x / 2}$ for all $0 \leq$ $x \leq n$. Let $f_{n}(x):=\left(1+\frac{x}{n}\right)^{-n} \log [2+\cos (x / n)] \chi_{[0, n]}(x), x \geq 0$. It follows that $\left|f_{n}(x)\right|=f_{n}(x) \leq e^{-x / 2} \log [2+\cos (x / n)] \chi_{[0, n]}(x) \leq e^{-x / 2} \log 3$, for all $x \geq 0$, since $-1 \leq \cos (x / n) \leq 1$. The function $x \mapsto e^{-x / 2} \log 3$ is non-negative and integrable on $[0, \infty)$. Also, $\lim _{n \rightarrow \infty} f_{n}(x)=e^{-x} \log 3$ so, by the Dominant Convergence Theorem (DCT), we have that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{-n} \log (2+\cos (x / n)) d x & =\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x \\
& =\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(x) d x \\
& =\int_{0}^{\infty} e^{-x} \log 3 d x=\log 3
\end{aligned}
$$

7.12 We have

$$
\begin{aligned}
\int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} \log (2+\cos (x / n)) d x & =\int_{0}^{\infty}\left(1-\frac{x}{n}\right)^{n} \log (2+\cos (x / n)) \chi_{[0, n]}(x) d x \\
& =\int_{0}^{\infty}\left(1-\frac{x}{n}\right)^{n} \log (2+\cos (x / n)) \chi_{[0, n)}(x) d x
\end{aligned}
$$

the last equality following from the fact that the two functions under the last two integrals are equal everywhere except at $x=n$. Note that $\log (1-x) \leq-x$ for all $0 \leq x<1$ (the proof is straightforward, similar to the one in Exercise
7.11). It follows that, for $0 \leq x<n$,

$$
\begin{aligned}
\left|\left(1-\frac{x}{n}\right)^{n} \log (2+\cos (x / n)) \chi_{[0, n)}(x)\right| & =\left|e^{n \log \left(1-\frac{x}{n}\right)} \log (2+\cos (x / n)) \chi_{[0, n)}(x)\right| \\
& \leq e^{n(-x / n)} \log 3 \\
& =e^{-x} \log 3
\end{aligned}
$$

The function $x \mapsto e^{-x} \log 3$ is non-negative and integrable on $[0, \infty)$ so, by DCT, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} \log (2+\cos (x / n)) d x & =\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1-\frac{x}{n}\right)^{n} \log (2+\cos (x / n)) \chi_{[0, n)}(x) d x \\
& =\int_{0}^{\infty} \lim _{n \rightarrow \infty}\left[\left(1-\frac{x}{n}\right)^{n} \log (2+\cos (x / n)) \chi_{[0, n)}(x) d x\right] \\
& =\int_{0}^{\infty} e^{-x} \log 3=\log 3
\end{aligned}
$$

7.13 Let $f_{n}(x):=\frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}}, 0 \leq x \leq 1, n \in \mathbb{Z}^{+}$. It is an easy computation to show that $f_{n}(x) \geq f_{n+1}(x)$, for all $0 \leq x \leq 1$ (in fact, for all $x \in \mathbb{R}$) and that $f_{n} \downarrow f$ point-wise on $[0,1]$, where

$$
f(x)=\left\{\begin{array}{l}
0, \text { if } 0<x \leq 1 \\
1, \text { if } x=0
\end{array}\right.
$$

The function f is integrable and $\int_{0}^{1} f=0$, since $f=0$ a.e. on [0,1$]$. Clearly, $\left|f_{n}(x) \log (2+\cos (x / n)) \chi_{[0,1]}\right| \leq\left|f_{n}(x)\right| \log 3$. Since the sequence $\left\{f_{n}(x)\right\}$ is decreasing for all $0 \leq x \leq 1$ and both $f_{1} \equiv 1$ and f (the point-wise limit) are bounded, it follows that there exists $M>0$ such that $\left|f_{n}(x)\right|<M$, for all $0 \leq x \leq 1$ and $n \in \mathbb{Z}^{+}$. By DCT we get that the required limit exists and is equal to 0 .
7.14 Define $f_{n}(x):=n e^{-n x} \geq 0$, for all $x \geq 0$. The integral in question becomes $\int_{0}^{\infty} f_{n}(x) \sin (1 / x) d x=\int f_{n}(x) \sin (1 / x) \chi_{(0, \infty)}(x) d x$. It is straightforward to show that, for all $0<x<\infty,\left\{f_{n}(x)\right\}$ is decreasing and $f_{n} \downarrow 0$. Since $\left|f_{n}(x) \sin (1 / x) \chi_{(0, \infty)}(x)\right| \leq f_{n}(x) \leq f_{1}(x)$ and $f_{1}(x)=e^{-x}$ is bounded on $(0, \infty)$, it follows that there exists $M>0$ such that $\left|f_{n}(x) \sin (1 / x) \chi_{(0, \infty)}(x)\right|<M$. Since e^{-x} is integrable on $(0, \infty)$, by DCT,

$$
\lim _{n \rightarrow \infty} \int f_{n}(x) \sin (1 / x) \chi_{(0, \infty)}(x) d x=\int \lim _{n \rightarrow \infty}\left[f_{n}(x) \sin (1 / x) \chi_{(0, \infty)}(x)\right] d x=0
$$

7.15 Since f is continuous at 1 , it follows that $\lim _{n \rightarrow \infty} f\left(1+x / n^{2}\right) g(x) \chi_{[-n, n]}(x)=$ $f(1) g(x)$, for all $x \in \mathbb{R}$. For every $x \in \mathbb{R}$ we have

$$
\left|f\left(1+x / n^{2}\right) g(x) \chi_{[-n, n]}(x)\right| \leq M\left|g(x) \chi_{[-n, n]}(x)\right| \leq M|g(x)|
$$

where M is a bound for f (i.e. $|f|<M)$. By hypothesis, g is integrable, so we can apply DCT. It follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{-n}^{n} f\left(1+x / n^{2}\right) g(x) d x & =\lim _{n \rightarrow \infty} \int f\left(1+x / n^{2}\right) g(x) \chi_{[-n, n]}(x) d x \\
& =\int \lim _{n \rightarrow \infty}\left[f\left(1+x / n^{2}\right) g(x) \chi_{[-n, n]}(x)\right] d x \\
& =f(1) \int g(x) d x
\end{aligned}
$$

7.25 (1) $\nu(\emptyset)=\int_{\emptyset} f d \mu=0$, because $\mu(\emptyset)=0$. Let $\left\{A_{n}\right\} \subset \mathcal{A}$ be a pairwise disjoint, countable family of measurable sets and let $A:=\bigcup_{n=1}^{\infty} A_{n}$. Then,

$$
\begin{aligned}
\nu(A) & =\int_{A} f d \mu=\int f \chi_{\left(\cup_{n=1}^{\infty} A_{n}\right)} d \mu=\int \sum_{n=1}^{\infty} f \chi_{A_{n}} d \mu \\
& =\sum_{n=1}^{\infty} \int f \chi_{A_{n}} d \mu=\sum_{n=1}^{\infty} \int_{A_{n}} f d \mu=\sum_{n=1}^{\infty} \nu\left(A_{n}\right),
\end{aligned}
$$

where we used the fact that $\left\{A_{n}\right\}$ are pairwise disjoint and Proposition 7.6.
(2) It is enough to prove the required identity for the case where g is a simple function. Indeed, under that assumption, let g be a nonnegative integrable function. By Proposition 5.14, there exists a sequence $\left\{s_{n}\right\}$ of nonnegative measurable simple functions such that $s_{n} \uparrow g$, which implies $s_{n} f \rightarrow g f$. In fact, since $\left\{s_{n}\right\}$ is increasing and $f \geq 0$, it follows that $s_{n} f \uparrow g f$. So, on one hand, by the Monotone Convergence Theorem (MTC), $\int s_{n} f d \mu \rightarrow \int f g d \mu$. On the other, by the assumption we made that the formula is true for simple functions, $\int s_{n} f d \mu=\int s_{n} d \nu$ which again by MTC, converges to $\int g d \nu$, so $\int g d \nu=\int f g d \mu$. The identity for the the general case follows immediately by applying it to g^{+}, g^{-}.
It remains to prove the formula for the case when $g=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}$ is a
nonnegative measurable simple function:

$$
\begin{aligned}
\int g d \nu & =\sum_{k=1}^{n} a_{k} \nu\left(A_{k}\right)=\sum_{k=1}^{n} a_{k} \int_{A_{k}} f d \mu \\
& =\sum_{k=1}^{n} \int_{A_{k}} a_{k} f d \mu=\sum_{k=1}^{n} \int a_{k} f \chi_{A_{k}} d \mu \\
& =\int f \sum_{k=1}^{n} a_{k} \chi_{A_{k}} d \mu=\int f g d \mu .
\end{aligned}
$$

8.5 It suffices to show that the limit is 0 for t taking only natural values, in which case we shall denote it as $n:=t$. Define $A_{n}:=\{x \in X: f(x) \geq n\}, n \in \mathbb{Z}^{+}$. Note that, by the definition of the integral of a nonnegative integrable function, $n \mu\left(A_{n}\right) \leq \int f \chi_{A_{n}}$, since $s_{n}:=n \chi_{A_{n}}$ is a simple function satisfying $0 \leq s_{n} \leq f$. Also, clearly $f \chi_{A_{n}} \leq f$ and, by hypothesis, f is nonnegative and integrable. Lastly, we show that $\lim _{n \rightarrow \infty} f \chi_{A_{n}}=0$. First note that $A_{n+1} \subset A_{n}$ for all n, so $A_{n} \downarrow A:=\cap_{k=1}^{\infty} A_{k}$. Moreover, since f is a real-valued function, $A=\emptyset:$ if $\exists a \in \cap_{k=1}^{\infty} A_{k}$ then $f(a) \geq n$ for all n, which is not possible for any real number $f(a) \in \mathbb{R}$. It follows that $\lim _{n \rightarrow \infty} f \chi_{A_{n}}=f \chi_{A}=0$. By applying DCT, we obtain the result.
8.7 Let $A_{n}:=\{x \in X: f(x) \geq n\}$. We have

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\sum_{n=1}^{\infty} \int \chi_{A_{n}}=\int \sum_{n=1}^{\infty} \chi_{A_{n}}
$$

by Proposition 7.6. Let $x \in X$. For all $n>f(x)$ we have $\chi_{A_{n}}(x)=0$, so $\sum_{n=1}^{\infty} \chi_{A_{n}}(x)=\sum_{n=1}^{[f(x)]} \chi_{A_{n}}(x)=[f(x)]$, where $[f(x)]$ is the greatest integer less than or equal to $f(x)$. But $f(x)-1 \leq[f(x)] \leq f(x)$, hence $f(x)-1 \leq \sum_{n=1}^{\infty} \chi_{A_{n}}(x) \leq$ $f(x)$. Since $x \in X$ was arbitrarily fixed, the latter double inequality is true for any $x \in X$. If f is integrable, then $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\int \sum_{n=1}^{\infty} \chi_{A_{n}} \leq \int f<\infty$. Conversely, $0 \leq f \leq 1+\sum_{n=1}^{\infty} \chi_{A_{n}}$ which implies that f is integrable: $\int f \leq$ $\int\left(1+\sum_{n=1}^{\infty} \chi_{A_{n}}\right)=\mu(X)+\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$, since μ is finite.
9.1 Define

$$
f(x)=\left\{\begin{array}{l}
0, \text { if } x \in[0,1] \cap \mathbb{Q} \\
2, \text { if } x \in[0,1] \cap(\mathbb{Q}+\pi) \\
1, \text { otherwise }
\end{array}\right.
$$

where $\mathbb{Q}+\pi=\{r+\pi: r \in \mathbb{Q}\}$. Then, $f=\chi_{[0,1] \backslash \mathbb{Q}}+\chi_{[0,1] \cap(\mathbb{Q}+\pi)}$ is Lebesque measurable, and by density of \mathbb{Q} and $\mathbb{Q}+\pi$ we have $\underline{R}(f)=0$ and $\bar{R}(f)=2$. On the other hand, as countable sets, both $[0,1] \cap \mathbb{Q}$ and $[0,1] \cap(\mathbb{Q}+\pi)$ have Lebesque measure zero and $f=1$ on their complement, so $\int_{[0,1]} f=m([0,1])=1$.

