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7.11 First, note that log(1 + x) ≥ x − x2/2, for all x ≥ 0. Indeed, if g(x) :=

log(1 + x) − x + x2/2 for all x ≥ 0, then g(0) = 0 and g′(x) =
x2

1 + x
≥ 0,

hence g(x) ≥ g(0) = 0 for all x ≥ 0. Then,
(

1 +
x

n

)−n
= e−n log (1 + x/n) ≤

e−n
(
x/n− x2/2n2

)
= e(−x+ x2/2n) ≤ e(−x+ x2/2x) ≤ e−x/2 for all 0 ≤

x ≤ n. Let fn(x) :=
(

1 +
x

n

)−n
log [2 + cos(x/n)]χ[0,n](x), x ≥ 0. It follows

that |fn(x) | = fn(x) ≤ e−x/2 log [2 + cos(x/n)]χ[0,n](x) ≤ e−x/2 log 3, for all

x ≥ 0, since −1 ≤ cos(x/n) ≤ 1. The function x 7→ e−x/2 log 3 is non-negative
and integrable on [0,∞). Also, lim

n→∞
fn(x) = e−x log 3 so, by the Dominant

Convergence Theorem (DCT), we have that

lim
n→∞

∫ n

0

(
1 +

x

n

)−n
log(2 + cos(x/n))dx = lim

n→∞

∫ ∞
0

fn(x)dx

=

∫ ∞
0

lim
n→∞

fn(x)dx

=

∫ ∞
0

e−x log 3dx = log 3.

7.12 We have∫ n

0

(
1− x

n

)n
log(2 + cos(x/n))dx =

∫ ∞
0

(
1− x

n

)n
log(2 + cos(x/n))χ[0,n](x)dx

=

∫ ∞
0

(
1− x

n

)n
log(2 + cos(x/n))χ[0,n)(x)dx,

the last equality following from the fact that the two functions under the last
two integrals are equal everywhere except at x = n. Note that log(1− x) ≤ −x
for all 0 ≤ x < 1 (the proof is straightforward, similar to the one in Exercise
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7.11). It follows that, for 0 ≤ x < n,∣∣∣∣ (1− x

n

)n
log(2 + cos(x/n))χ[0,n)(x)

∣∣∣∣ =

∣∣∣∣en log(1− x
n) log(2 + cos(x/n))χ[0,n)(x)

∣∣∣∣
≤ en(−x/n) log 3

= e−x log 3.

The function x 7→ e−x log 3 is non-negative and integrable on [0,∞) so, by DCT,
we have

lim
n→∞

∫ n

0

(
1− x

n

)n
log(2 + cos(x/n))dx = lim

n→∞

∫ ∞
0

(
1− x

n

)n
log(2 + cos(x/n))χ[0,n)(x)dx

=

∫ ∞
0

lim
n→∞

[(
1− x

n

)n
log(2 + cos(x/n))χ[0,n)(x)dx

]
=

∫ ∞
0

e−x log 3 = log 3.

7.13 Let fn(x) :=
1 + nx2

(1 + x2)n
, 0 ≤ x ≤ 1, n ∈ Z+. It is an easy computation to show

that fn(x) ≥ fn+1(x), for all 0 ≤ x ≤ 1 (in fact, for all x ∈ R) and that fn ↓ f
point-wise on [0, 1], where

f(x) =

{
0, if 0 < x ≤ 1,

1, if x = 0.

The function f is integrable and
∫ 1

0
f = 0, since f = 0 a.e. on [0, 1]. Clearly,

|fn(x) log(2 + cos(x/n))χ[0,1]| ≤ |fn(x)| log 3. Since the sequence {fn(x)} is
decreasing for all 0 ≤ x ≤ 1 and both f1 ≡ 1 and f (the point-wise limit) are
bounded, it follows that there exists M > 0 such that |fn(x) | < M , for all
0 ≤ x ≤ 1 and n ∈ Z+. By DCT we get that the required limit exists and is
equal to 0.

7.14 Define fn(x) := ne−nx ≥ 0, for all x ≥ 0. The integral in question becomes∫∞
0
fn(x) sin(1/x)dx =

∫
fn(x) sin(1/x)χ(0,∞)(x)dx. It is straightforward to

show that, for all 0 < x < ∞, {fn(x)} is decreasing and fn ↓ 0. Since
|fn(x) sin(1/x)χ(0,∞)(x)| ≤ fn(x) ≤ f1(x) and f1(x) = e−x is bounded on (0,∞),
it follows that there exists M > 0 such that |fn(x) sin(1/x)χ(0,∞)(x)| < M .
Since e−x is integrable on (0,∞), by DCT,

lim
n→∞

∫
fn(x) sin(1/x)χ(0,∞)(x)dx =

∫
lim
n→∞

[fn(x) sin(1/x)χ(0,∞)(x)]dx = 0.
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7.15 Since f is continuous at 1, it follows that lim
n→∞

f(1 + x/n2)g(x)χ[−n,n](x) =

f(1)g(x), for all x ∈ R. For every x ∈ R we have∣∣f(1 + x/n2)g(x)χ[−n,n](x)
∣∣ ≤M

∣∣g(x)χ[−n,n](x)
∣∣ ≤M |g(x)| ,

where M is a bound for f (i.e. |f | < M). By hypothesis, g is integrable, so we
can apply DCT. It follows that

lim
n→∞

∫ n

−n
f(1 + x/n2)g(x)dx = lim

n→∞

∫
f(1 + x/n2)g(x)χ[−n,n](x)dx

=

∫
lim
n→∞

[f(1 + x/n2)g(x)χ[−n,n](x)]dx

= f(1)

∫
g(x)dx.

7.25 (1) ν(∅) =
∫
∅ fdµ = 0, because µ(∅) = 0. Let {An} ⊂ A be a pairwise disjoint,

countable family of measurable sets and let A :=
∞⋃
n=1

An. Then,

ν(A) =

∫
A

fdµ =

∫
fχ(∪∞n=1An)dµ =

∫ ∞∑
n=1

fχAndµ

=
∞∑
n=1

∫
fχAndµ =

∞∑
n=1

∫
An

fdµ =
∞∑
n=1

ν(An),

where we used the fact that {An} are pairwise disjoint and Proposition 7.6.

(2) It is enough to prove the required identity for the case where g is a simple
function. Indeed, under that assumption, let g be a nonnegative integrable
function. By Proposition 5.14, there exists a sequence {sn} of nonnegative
measurable simple functions such that sn ↑ g, which implies snf → gf . In
fact, since {sn} is increasing and f ≥ 0, it follows that snf ↑ gf . So, on one
hand, by the Monotone Convergence Theorem (MTC),

∫
snfdµ→

∫
fgdµ.

On the other, by the assumption we made that the formula is true for simple
functions,

∫
snfdµ =

∫
sndν which again by MTC, converges to

∫
gdν, so∫

gdν =
∫
fgdµ. The identity for the the general case follows immediately

by applying it to g+, g−.

It remains to prove the formula for the case when g =
∑n

k=1 akχAk
is a
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nonnegative measurable simple function:∫
gdν =

n∑
k=1

akν(Ak) =
n∑
k=1

ak

∫
Ak

fdµ

=
n∑
k=1

∫
Ak

akfdµ =
n∑
k=1

∫
akfχAk

dµ

=

∫
f

n∑
k=1

akχAk
dµ =

∫
fgdµ.

8.5 It suffices to show that the limit is 0 for t taking only natural values, in which
case we shall denote it as n := t. Define An := {x ∈ X : f(x) ≥ n}, n ∈ Z+.
Note that, by the definition of the integral of a nonnegative integrable function,
nµ(An) ≤

∫
fχAn , since sn := nχAn is a simple function satisfying 0 ≤ sn ≤ f .

Also, clearly fχAn ≤ f and, by hypothesis, f is nonnegative and integrable.
Lastly, we show that lim

n→∞
fχAn = 0. First note that An+1 ⊂ An for all n, so

An ↓ A := ∩∞k=1Ak. Moreover, since f is a real-valued function, A = ∅: if
∃a ∈ ∩∞k=1Ak then f(a) ≥ n for all n, which is not possible for any real number
f(a) ∈ R. It follows that lim

n→∞
fχAn = fχA = 0. By applying DCT, we obtain

the result.

8.7 Let An := {x ∈ X : f(x) ≥ n}. We have

∞∑
n=1

µ(An) =
∞∑
n=1

∫
χAn =

∫ ∞∑
n=1

χAn ,

by Proposition 7.6. Let x ∈ X. For all n > f(x) we have χAn(x) = 0, so
∞∑
n=1

χAn(x) =

[f(x)]∑
n=1

χAn(x) = [f(x)], where [f(x)] is the greatest integer less than

or equal to f(x). But f(x)− 1 ≤ [f(x)] ≤ f(x), hence f(x)− 1 ≤
∞∑
n=1

χAn(x) ≤

f(x). Since x ∈ X was arbitrarily fixed, the latter double inequality is true

for any x ∈ X. If f is integrable, then
∞∑
n=1

µ(An) =

∫ ∞∑
n=1

χAn ≤
∫
f < ∞.

Conversely, 0 ≤ f ≤ 1 +
∞∑
n=1

χAn which implies that f is integrable:

∫
f ≤∫ (

1 +
∞∑
n=1

χAn

)
= µ(X) +

∞∑
n=1

µ(An) <∞, since µ is finite.
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9.1 Define

f(x) =


0, if x ∈ [0, 1] ∩Q,
2, if x ∈ [0, 1] ∩ (Q + π),

1, otherwise,

where Q+π = {r+π : r ∈ Q}. Then, f = χ[0,1]\Q+χ[0,1]∩(Q+π) is Lebesque mea-
surable, and by density of Q and Q+π we have R(f) = 0 and R(f) = 2. On the
other hand, as countable sets, both [0, 1]∩Q and [0, 1]∩ (Q+π) have Lebesque

measure zero and f = 1 on their complement, so

∫
[0,1]

f = m([0, 1]) = 1.

5


