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12.1 Let µ be a signed measure on a measurable space (X,A). Suppose first that A
is a null set and let P,N ∈ A be a pair of sets given by the Hahn decomposition
theorem (P is positive, N is negative, X = P ∪ N,P ∩ N = ∅). Then, by the
Jordan decomposition theorem, |µ| (A) = µ+(A) + µ−(A) = µ(A ∩ P )− µ(A ∩
N) = 0, because A ∩ P ⊂ A, A ∩ N ⊂ A and A is a null set. Conversely,
if |µ| (A) = 0 then µ+(A) = µ−(A) = 0, since both µ+ and µ− are positive
measures. If B ⊂ A then µ+(B) = µ−(B) = 0, by monotonicity, hence µ(B) =
0.

12.3 Let s := sup

{∣∣∣∣ ∫
A

fdµ

∣∣∣∣ : |f | ≤ 1

}
. By Exercise 12.2 (not included in this prob-

lem set),

∣∣∣∣ ∫
A

fdµ

∣∣∣∣ ≤ ∫
A

|f | d |µ| ≤
∫
A

d |µ| = |µ| (A), for all |f | ≤ 1. This im-

plies s ≤ |µ| (A). For the converse inequality, let P, S ∈ A be given by the Hahn
decomposition theorem, with P is positive and N is negative. Then, |µ| (A) =

µ+(A)+µ−(A) = µ(A∩P )−µ(A∩N) = |µ(A ∩ P )− µ(A ∩N)| =
∣∣∣∣ ∫

A∩P
dµ−∫

A∩P
dµ

∣∣∣∣ =

∣∣∣∣ ∫ (χA∩P − χA∩N)dµ

∣∣∣∣ =

∣∣∣∣ ∫
A

(χP − χN)dµ

∣∣∣∣. The function f :=

χP − χN satisfies |f | = 1, which shows that |µ| (A) ∈
{∣∣∣∣ ∫

A

fdµ

∣∣∣∣ : |f | ≤ 1

}
,

hence |µ| (A) ≤ s.

12.4 Let P, S ∈ A be given by the Hahn decomposition theorem, where P is positive
and N is negative. The first inequality: λ+(A) = λ(A∩P ) = µ(A∩P )− ν(A∩
P ) ≤ µ(A∩P ) ≤ µ(A), where in the second last inequality we used the fact that
both µ and ν are positive and finite. Similarly, the second inequality is derived
as follows: λ−(A) = −λ(A∩N) = −µ(A∩N) + ν(A∩N) ≤ ν(A∩N) ≤ ν(A).

12.7 Let

a := sup

{∣∣∣∣ ∫
A

fdµ

∣∣∣∣ : |f | ≤ 1

}

1



and

b := sup

{
n∑

j=1

|µ(Bj)| : Bj ∈ A, {Bj}nj=1 is a partition of A, n ∈ N

}
.

By Exercise 12.3, it suffices to show that a = b. As we have seen in the same

exercise,

∣∣∣∣ ∫
A

fdµ

∣∣∣∣ ≤ |µ | (A), for all |f | ≤ 1, so a ≤ b, since |µ| (A) = µ(A∩P )−

µ(A∩N) = |µ(A ∩ P ) |+ |µ(A ∩N)|, which is an element of the set defined in
the question (again, here P,N are given by the Hahn decomposition theorem).
For the converse inequality, let {Bj}nj=1 be a partition of A, Bj ∈ A and define

f(x) :=
|µ(Bj)|
µ(Bj)

for x ∈ Bj, j = 1, . . . , n, and f(x) = 0 for all x ∈ X \ A (note

that |f | ≤ 1). Then,

∣∣∣∣ ∫
A

fdµ

∣∣∣∣ =

∣∣∣∣ n∑
j=1

|µ(Bj) |
µ(Bj)

·
∫
Bj

dµ

∣∣∣∣ =
n∑

j=1

|µ(Bj)|, which

implies b ≤ a.

5. (a) Let M(X) be the set of all complex measures on (X,M) endowed with the
two operations defined in the question. Then, µ0 := 0 (the zero-measure)
is the additive identity, (−µ)(A) := −µ(A) is the additive inverse of any
µ ∈ M(X), 1 ∈ C is the complex scalar satisfying 1 · µ = µ and we
let to the reader to prove the rest of the vector space axioms, which are
straightforward to verify. For example, here is one of the distributivity
axioms: if a, b ∈ C, µ ∈ M(X) and E ∈ M, then [(a + b)µ](E) = (a + b) ·
µ(E) = a · µ(E) + b · µ(E) = (aµ)(E) + (bµ)(E), hence (a+ b)µ = aµ+ bµ.

(b) We use the following definition for the total variation measure |µ| of a
complex measure µ (see for example Rudin’s Real and Complex Analysis,
3rd edition, p. 116):

|µ | (A) = sup

{
∞∑
j=1

|µ(Bj) | : Bj ∈M, {Bj}j is a partition of A

}
(0.1)

For the rest of the proof, we shall write sup
∞∑
j=1

|µ(Bj)| instead of the full

expression (0.1), where the supremum is taken over all partitions {Bj}j of

X with Bj ∈M. For a ∈ C we have ‖aµ‖ = |aµ| (X) = sup
∞∑
j=1

|aµ(Bj)| =

|a | sup
∞∑
j=1

|µ(Bj) | = |a|µ(X) = |a| ‖µ‖. Next, suppose that ‖µ‖ :=

|µ | (X) = 0 and let A ∈ M. Then, |µ(A) | ≤ |µ(A)| + |µ(X \ A) | ≤
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sup
∞∑
j=1

|µ(Bj) | = |µ| (X) = 0. This proves that ‖µ‖ = 0 implies µ ≡ 0.

Lastly, for the triangle inequality, we have

‖µ+ ν‖ = |µ+ ν | (X)

= sup
∞∑
j=1

|µ(Bj) + ν(Bj)|

≤ sup
∞∑
j=1

|µ(Bj)|+ |ν(Bj)|

≤ sup
∞∑
j=1

|µ(Bj)|+ sup
∞∑
j=1

|ν(Cj) |

= |µ| (X) + |ν | (X) = ‖µ‖+ ‖ν‖.
The last inequality involves all possible partitions of X, separately for µ
and ν, respectively. That is why we used different notations (Bj and Cj).

6. This is Proposition 6.8 in Rudin’s Real and Complex Analysis, 3rd edition, p.
120., whose solution we present in here.

(a) First note that λ is concentrated on A iff λ(E) = 0 for all E ∈ M that do
not intersect A. Indeed, one direction is immediate and, to prove the other
one, just write E = (E \ A) ∪ (E ∩ A), as a disjoint union, and note that,
by hypothesis, λ(E \A) = 0. Now, let E ∈M such that E ∩A = ∅. Then,
λ(E) = 0 so, for any partition {Ej}j of E we have λ(Ej) = 0 for all j, since
none of the Ej intersect A. By the definition used in Question 5 above
(for complex measures) and also, by Exercise 12.7 (for signed measures), it
follows that |λ| (E) = 0.

(b) For two measures λ1, λ2 to be mutually singular (as per the definition in
the textbook) is the same as saying that λ1 is concentrated on A and λ2 is
concentrated on B, for some measurable sets A,B ∈M, A∩B = ∅, A∪B =
X (we leave the straightforward proof of this statement to the reader).
Then, point (b) is an immediate consequence of point (a).

(c) λ1 ⊥ µ implies the existence of two measurable sets A1, B1 ∈ M, disjoint,
A1 ∪ B1 = X, such that λ1 is concentrated on A1 and µ on B1. Similarly,
there exists disjoint measurable sets A2, B2 ∈ M such that λ2 is concen-
trated on A2 and µ on B2. Then, λ1 + λ2 is concentrated on A := A1 ∪A2,
µ is concentrated on B := B1 ∩B2, X = A ∪B and A ∩B = ∅.

(d) This point is immediate.

(e) Let E ∈M be such that µ(E) = 0 and let {Ej}j be a partition of E. Since
µ is positive, it follows that µ(Ej) = 0 for all j, so λ(Ej) = 0 for all j, hence∑

j |λ(Ej)| = 0, which implies |λ| (E) = 0.
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(f) λ2 ⊥ µ implies that there exists a set A such that µ(A) = 0 and on which
λ2 is concentrated. Since λ1 � µ, λ1(B) = 0 for all B ⊂ A, hence λ1 is
concentrated on the complement of A, which proves the statement.

(g) By point (f), it follows that λ ⊥ λ which clearly implies λ ≡ 0.

7. Suppose there exist two pairs λa, λs and λ′a, λ
′
s such that λ = λa + λs = λ′a + λ′s

such that λa � µ, λs ⊥ µ and λ′a � µ, λ′s ⊥ µ. Then

λ′a − λa = λs − λ′s (0.2)

Then, by point (c) in the previous exercise, we have λs− λ′s ⊥ µ. By point (d),
we have λ′a − λa � µ. By (0.2), λ′a − λa and λs − λ′s are the same measure, so
by point (g) we must have λ′a − λa = λs − λ′s = 0, which proves the statement.
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