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Abstract

Local data structures are systems of neighbourhoods within data sets.
Specifications of neighbourhoods can arise in multiple ways, for example,
from global geometric structure (stellar charts), combinatorial structure
(weighted graphs), desired computational outcomes (natural language
processing), or sampling. These examples are discussed, in the context of
a theory of neighbourhoods.

This theory is a step towards a mathematical understanding of clus-
tering for large data sets. These clusters can only be approximated in
practice, but approximations can be constructed from neighbourhoods
via patching arguments that are derived from the Healy-McInnes UMAP
construction. The patching arguments are enabled by changing the theo-
retical basis for data set structure, from metric spaces to extended pseudo
metric spaces.

Introduction

This paper is a preliminary discussion of the mathematics of local structures for
large data sets.

Potential objects of study include subsets U ⊂ RN , where the data set U (or
“universe”) is essentially infinite, meaning that U is too large to analyze with
available computational devices.

Alternatively, there may not be a metric space structure on the data set U .
Such objects U can arise as vertices of large weighted graphs Γ, which could
describe data transfers that occur during a time interval. Other examples arise
in the “bag of words” model natural language processing, which model has a
combinatorial structure that is not graph theoretic.

There could, finally, be no apparent geometric or combinatorial structure for
U , and its structure near a point may have to be approximated (or learned) by
iterated sampling.
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In general, one wants to break up a data set U into smaller computable pieces
N that cover U in the sense that every x ∈ U is in some neighbourhood N , in
the hope/expectation that analyses of the neighbourhoods N can be assembled
to a full or at least useful partial analysis of the universal data set U . This
is essentially the approach taken by the mapper algorithm [?] (see Remark ??
below), and it can make perfect sense for clustering at relatively small distance
scales.

The elements of a neighbourhood N should be close to x in some sense, but
one has to address the question of how to find such neighbourhoods in a sea
of data U . If there is no prior information about the structure or genesis of U ,
the phrase “close to x” may not have much meaning. In good cases, there is
information about local geometric or combinatorial structures that allows one
to get started.

Most generally, a neighbourhood N of a point x in a data set U is a suitably
sized subset of U which contains x. If U is a metric space (or an extended
pseudo metric space) then N has a diameter s(N), which is the maximum
distance d(x, y) for y ∈ N .

The inclusion N ⊂ U determines an inclusion of Vietoris-Rips complexes
V (N) ⊂ V (U).

If every x ∈ U has a specific choice of neighbourhood Nx, as in Section 3,
then the collection of all such neighbourhoods determines an inclusion of filtered
complexes

N(U) := ∪x∈U V (Nx) ⊂ V (U),

which complexes are filtered by distance in the usual way. I say that N(U)
is the neighbourhood complex that is defined by the family of neighbourhoods
N = {Nx}.

The neighbourhood complex V (N) is the mapper complex for the covering
V (Nx) ⊂ V (U) of the global Vietoris-Rips complex V (U), as in [?].

Every element y ̸= x in a neighbourhood Nx determines a ray

{x, y} ⊂ Nx ⊂ U ,

and the collection of such rays determines a filtered subcomplex

R(Nx) = ∨y ̸=x V ({x, y}) ⊂ V (Nx).

Taking the union
R(U) = ∪x∈U R(Nx) ⊂ V (U)

defines the ray subcomplex R(U), which is a subcomplex of both V (U and N(U).

The ray subcomplex R(U) is a filtered (or weighted) graph.
If the neighbourhoods Nx consist of sets of k-nearest neighbours for the

points of U , then the ray subcomplex R(U) is the k-nearest neighbours graph,
which is a well-studied object. The k-nearest neighbours graph is used to con-
struct the UMAP graph [?], [?], [?].
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The inclusions
R(U) ⊂ N(U) ⊂ V (U)

of filtered complexes induce surjections

π0Rs(U)→ π0Ns(U)→ π0Vs(U)

for distance parameters s, which are analyzed in special cases in Sections 3 and
4. There are good comparison results for finite s for bounded neighbourhoods,
which is the subject of Section 4. See Lemma ??, Lemma ??, Lemma ?? and
Lemma ??.

In that setting, the neighbourhood complex Ns(U) for bounded neighbour-
hoods has the same 1-skeleton as the global Vietoris-Rips complex Vs(U) at
small distance scales s, which makes the neighbourhood complex Ns(U) a good
approximation of Vs(U) for clustering for such s.

At higher distance scales, the clusters of the ray complex Rs(U) coincide with
those of the neighbourhood complex Ns(U). The outcome is that, for clustering,
the neighbourhood complex N(U) is a bridge between the ray complex R(U) (a
UMAP-like object) and the full Vietoris-Rips complex V (U).

The basic ideas and constructions of this paper appear in the Sections 2
and 3, along with a discussion of the relationship between neighbourhoods and
sequences of nearest neighbours. With a view to potential applications (as in
Section 5), we generally assume that U is an extended pseudo metric space, or
an ep-metric space. The basic ideas around ep-metric spaces are summarized in
Section 1.

Subsequent results and calculations are determined by choices of neighbour-
hoods, which choices vary with the geometric or combinatorial structures of
specific examples.

The definitions and results of Sections 4, 6 and 7 are based on naive examples
(or thought experiments) that motivate and illustrate these ideas:

1) The Gaia Archive U is a database of roughly a billion stars in the Milky
Way. The raw data for the Archive is a set of scans that has been collected
by the Gaia Space Observatory spacecraft, starting in 2014. The scans return
high resolution photometric and spectral data for stars within small apertures,
and so the archive is constructed from an assembly of local data. The positions
of the stars in the archive relative to the Sun are determined, after repeated
observations and much computation.

These positions can be expressed as a function p : U → R3 that determines
the members of the Archive U uniquely. The position function p is a type of
dimension reduction. In the language of the mapper construction, it is a filter
function [?].

From observation, if x is a star in the archive U , then there is a neighbour-
hood Nx ⊂ U of stars close to x such that Nx has a computable number of
elements. We could insist that Nx is a bounded neighbourhood, in that it has
a bounded radius s(Nx) and it contains at most k elements for some choice of
integer k.
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This is an explicitly geometric example, which is closely aligned with meth-
ods that are presented in Section 4.

2) For some data sets, there is a graph structure Γ with no apparent ambient
metric space.

For example, a collection of data transfers between computer accounts within
a (short enough) time interval can be given the structure of a sparse directed
weighted graph, as in Example ?? below. The number of bytes transmitted by
a transfer is its weight.

The vertices of these graphs have low valence. One knows all of the transfers
e : x↔ y for each account x, and from this one builds a computable neighbour-
hood Nk(x) of accounts which are separated from x by at most k transfer steps
(or hops).

One needs a way of assigning weights d(x, y) to the various y ∈ Nk(x).
Starting with an account x, one could expect that the accounts y with which it
does the most “business” are the closest to x. The elements y of Nk(x) which
are closest to x are defined “inversely” by the sum Σ(x, y) of all weights of
directed edge paths between x and y. Then the distance d(x, y) can be defined
by

d(x, y) = e−Σ(x,y)

between x and y for each y ∈ Nk(x).

From the data of neighbourhoods and weights, the Healy-McInnes UMAP
machine generates a global ep-metric D on the set Z of vertices of the graph Γ,
with clusters given by the directed set π0V (Z,D), or equivalently (Theorem ??)
by the directed set π0R(N) arising from the rays of the various neighbourhoods
Nk(x).

The point, ultimately, is that one uses the graph structure to find computable
weighted neighbourhoods Nk(x) for all vertices x of a sparse weighted directed
graph Γ. These local structures then patch together to define a global ep-metric
on the full set of vertices of Γ, along with cluster constructions.

These ideas appear in Section 6. In broad outline, they apply equally well
to all sparse weighted graphs.

There is a fundamental idea in play here: the UMAP construction creates
global space-level structure and cluster computations from local information
given by weighted neighbourhoods, with or without the existence of an ambient
metric.

This observation is applied repeatedly in examples that are displayed here.
We specify neighbourhoods with weights, and then feed these neighbourhoods
to general machinery.

The relevant theoretical features of the UMAP construction are summarized
in Section 5. That section contains an alternate presentation of the UMAP
graph, which is constructed by patching together rays without invoking most of
the standard methods of UMAP — see Theorem ??.

3) Section 7 is a discussion of neighbourhoods of words in the “continuous bag
of words” model from natural language processing (NLP). With such neigh-

4



bourhoods in hand (and with appropriate definitions of weights), one again uses
UMAP methods to construct an ep-metric space structure on the set of words
L that of a corpus.

The methods of Section 7 extend to any finite set of strings of data elements,
in which a local metric can be defined by proximity within strings.

In the examples displayed so far, the local nature of a data set varies within
a given geometric or combinatorial structure. These structures are in part de-
termined by desired computational outcomes, and they are the starting points
for calculations.

One could, finally, be presented with a very large cloud of points U with an
ep-metric space structure, but with no other information, from which one wants
to approximate (or discover) a neighbourhood Nx for a given point x ∈ U .

There seems to be no choice in such a case but to apply brute force meth-
ods that are based on repeated random sampling, with the goal of learning a
description of a neighbourhood, or “k-complete” neighbourhood Nx for x. A
potential method for doing so is described in Section 8.

The k-complete neighbourhoods of this paper (see Sections 2 and 4) are
strongly related to sets of k-nearest neighbours for a point x, but have the benefit
of being uniquely defined, and are therefore easier to manipulate theoretically.
Of course, the positive integer k must be specified up front.

Contents

1 Extended pseudo metric spaces

An extended pseudo-metric space (X, d), here called an ep-metric space, is a
set X together with a function d : X × X → [0,∞] such that the following
conditions hold:

1) d(x, x) = 0,

2) d(x, y) = d(y, x),

3) d(x, z) ≤ d(x, y) + d(y, z).

There is no condition that d(x, y) = 0 implies x and y coincide — this is where
the adjective “pseudo” comes from, and the gadget is “extended” because we
allow infinite distance.

A metric space (X, d) is an ep-metric space for which d(x, y) = 0 implies
x = y, and all distances d(x, y) are finite.

There is a category ep−met of ep-metric spaces, with morphisms f :
(X, d) → (Y, d′) given by functions f : X → Y which are non-expanding in
the sense that d′(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X.

The category ep−met is a cocomplete in the sense that it has all small
colimits.
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In effect, the coproduct ⊔i (Xi, di) is the disjoint union set ⊔i Xi, equipped
with the ep-metric d defined by

d(x, y) =

{
di(x, y) if x, y ∈ Xi for some i, and

∞ otherwise.

Coequalizers are constructed from a quotient function. Suppose that (X, d)
is an ep-metric space and that p : X → Y is a surjective function. Then Y has
an ep-metric D such that for any pair z, w ∈ Y ,

D(z, w) = inf
P

∑
d(xi, yi),

where each “path” P consists of pairs of points {xi, yi}, i ≤ n in X such that
z = p(x0), w = p(yn) and p(yi) = p(xi+1) for i ≤ n− 1. The function p defines
a map p : (X, d) → (Y,D) of ep-metric spaces that has the universal property
of quotients.

Example 1. Suppose that (X, d) and (X, d′) are ep-metric spaces having the
same set of oelements X. Then the amalgamation (wedge) (X, d) ∨ (X, d′) in
the ep-metric space category is an ep-metric space structure on X with

D(z, w) = inf
P

∑
D(xi, xi+1),

where each path P is a string of elements z = x0, xi, . . . , xn = w of X and

D(xi, yi) = min {d(xi, xi+1), d
′(xi, xi+1)}.

Each finite ep-metric space U has a family of Vietoris-Rips complexes Vs(U),
which are parameterized by distance s. Explicitly, Vs(U) is the abstract simpli-
cial complex (or poset) whose simplices are the finite subsets σ = {x0, . . . , xk}
of U such that d(xi, xj) ≤ s. The simplex σ is a k-simplex, and it has cardinality
k + 1.

As in the standard case, there is an ascending family of complexes

Vs(U) ⊂ Vt(U), s ≤ t,

with U = V0(U) (discrete complex on the set U).
The limiting object V∞(U) is a simplex ∆U with vertices U , but it is not the

case that V∞(U) is a union of the subobjects Vs(U) with s finite. Write

V<∞(U) = ∪s<∞ Vs(U).

The simplicial set V<∞(U) is a finite disjoint union of contractible compo-
nents.
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2 Neighbourhoods

Suppose that (Z, d) is a finite ep-metric space and that x ∈ Z.
In all of the following,

Z(x, s) = {y ∈ Z | d(x, y) ≤ s}

is the closed ball of radius s in Z that is centred at x.
A neighbourhood N of x is a subset N of Z with x ∈ N and d(x, y) <∞.

A neighbourhoodN aquires an ep-metric space structure from Z, and defines
a filtered subcomplex V (N) ⊂ V (Z) of the Vietoris-Rips complex V (Z).

The radius s(N) of the neighbourhood N is defined by

s(N) = maxy∈N d(x, y).

Then s(N) <∞ by assumption.
The neighbourhood N is said to be complete if N = Z(x, sN ).

A neighbourhood N of x is a set of nearest neighbours if d(x, z) ≥ s(N)
for all z ∈ Z − N . If N = {x, x1, . . . , xk} is a set of nearest neighbours (i.e.
with cardinality k + 1), then N is a set of k-nearest neighbours.

A nearest neighbour y for x with d(x, y) < ∞ can be identified with a
neighbourhood N = {x, y} of nearest neighbours. This means that d(x, y) ≤
d(x, z) for all z ∈ Z − {x}. The distance d(x, y) could be 0 in general.

Every complete neighbourhood N = Z(x, sN ) is a set of nearest neighbours
for x, and is a set of n-nearest neighbours, where n = |N | − 1.

Lemma 2. Suppose that N = {x, x1, . . . , xk} is a set of nearest neighbours for
x, and that the xi are ordered such that

d(x, x1) ≤ d(x, x2) ≤ · · · ≤ d(x, xk).

Then xi is a nearest neighbour of x in the subset Z − {x1, . . . , xi−1}.

Proof. We have

d(x, xi) ≤ d(x, xi+1) ≤ · · · ≤ d(x, xk) ≤ d(x, z)

for all z outside of N . It follows that d(x, xi)) ≤ d(x,w) for all w ∈ Z −
{x1, . . . xi−1}.

Lemma 3. Suppose that the neighbourhood N is a set of nearest neighbours for
x and z ∈ X −N is chosen such that d(x, z) < ∞ and d(x, z) ≤ d(x, v) for all
v ∈ Z −N . Then the set N ∪ {z} is a set of nearest neighbours for x.

Proof. The radius sz of N ∪ {z} is d(x, z). Choose v ∈ Z − (N ∪ {z}). Then
s(N) ≤ d(x, v), and d(x, z) ≤ d(x, v) by the minimality of d(x, z). It follows
that s(N ∪ {z}) ≤ d(x, v).
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Remark 4. Applying Lemma ?? inductively gives nearest neighbourhoods N
of x of all possible finite cardinalities |N | with |N | ≤ |Z|.

There is a function dx : Z → [0,∞] with dx(y) = d(x, y). A nearest neigh-
bour for x is an element z ∈ Z−{x} such that dx(z) <∞ and dx(z) is minimal.

For such an element z, write s = dx(z). Then s is the minimum finite value
of the image dx(Z), and z ∈ Zx(s), where

Zx(s) = d−1
x (s)

is the fibre (pre-image) of dx over s.

Lemma 5. Suppose that N is a set of nearest neighbours for x, and suppose
that {s1, . . . , sp} is the set of elements of the image dx(N), with s1 < . . . sp.
Then {s1, . . . , sp} is a set of smallest finite elements of dx(Z), and

N = Zx(s1) ∪ · · · ∪ Zx(sp−1) ⊔ F

where F ⊂ Zx(sp).

Proof. This is proved by induction on |N |, using Lemma ?? and Lemma ??.

If the neighbourhood N = {x, x1, . . . , xk} is a set of nearest neighbours of x
with

d(x, x1) ≤ · · · ≤ d(x, xk),

one says that (x1, x2, . . . , xk) is a sequence of k-nearest neighbours for x.

Lemma 6. Suppose that {y1, . . . , yk} is a set of distinct elements of X − {x}
with

d(x, y1) ≤ d(x, y2) ≤ · · · ≤ d(x, yk) <∞.

If (x1, . . . , xk) is a sequence of k-nearest neighbours for x, then d(x, xi) ≤
d(x, yi) for 1 ≤ i ≤ k.

Proof. d(x, x1) ≤ d(x, y1), since x1 is a nearest neighbour.

Suppose that d(x, xi) ≤ d(x, yi) for i ≤ r. Then

1) If d(x, xr) < d(x, yr+1) then d(x, xr+1) ≤ d(x, yr+1) by minimality.

2) If d(x, xr) = d(x, yr+1) then yr+1 is a nearest neighbour of x in Z−{x1, . . . , xr},
and so d(x, xr+1) = d(x, yr+1).

Corollary 7. Suppose that (x1, . . . , xk) and (y1, . . . , yk) are sequences of k-
nearest neighbours for x. Then d(x, xi) = d(x, yi) for all i.

Corollary 8. Suppose that W is a finite ep-metric space, and the inclusion
Z ⊂ W induces an ep-metric structure on the subset Z. Supppose that x ∈ Z.
Suppose that (w1, . . . , wk) and (z1, . . . , zk) are sequences of k-nearest neighbours
for x in W and Z, respectively. Then d(x,wi) ≤ d(x, zi) for 1 ≤ i ≤ k.
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Lemma 9. Suppose that (x1, . . . , xk) is a sequence of nearest neighbours for x in
Z, and that {y1, . . . , yk} is a sequence of distinct elements of Z with d(x, y1) ≤
· · · ≤ d(x, yk) <∞.

If d(x, xi) = d(y, yi) for all i, then (y1, . . . , yk) is a sequence of nearest
neighbours for x.

Proof. d(x, y1) = d(x, x1) ≤ d(x, z) for all z, so that y1 is a nearest neighbour
for x in Z.

Inductively, suppose that {y1, . . . , yi} is a set of nearest neighbours for x.
Suppose that d(x, xi) = d(x, xi+1). Then d(x, yi) = d(x, yi+1), and so

{y1, . . . , yi+1} is a set of nearest neighbours.
If d(x, xi) < d(x, xi+1), then {y1, . . . , yi} = {x1, . . . , xi} by comparing fibres

Zx(s), so that yi+1 is the nearest neighbour of x in Z − {y1, . . . , yi}.

We close this section with a discussion of k-complete neighbourhoods.

The image of the distance function dx : Z → [0,∞] has the form

Im(dx) = {s1, s2, . . . },

where there are strict inequalities si < si+1 for all i. The data set Z is a disjoint
union of non-empty fibres of dx:

Z = p−1
x (s1) ⊔ p−1

x (s2) ⊔ · · · = Zx(s1) ⊔ Zx(s2) ⊔ . . . .

For each si, there is a unique complete neighbourhood Z(x, si) of x, with

Z(x, si) = d−1
x (s1) ⊔ · · · ⊔ d−1

x (si).

The complete neighbourhoods of x form a finite ascending tower

Z(x, s1) ⊂ Z(x, s2) ⊂ Z(x, s3) ⊂ . . .

Any complete neighbourhood N with Z(x, si) ⫋ N must have strictly greater
radius sN > si.

Suppose that k is a positive integer and that |Z| ≥ k. Then there is a
smallest number i such that |Z(x, si)| ≥ k. In this case, the neighbourhood
Z(x, si) is k-complete.

Alternatively, the k-complete neighbourhood N of x is the smallest complete
neighbourhood such that |N | ≥ k.

The element x ∈ Z has a unique k-complete neighbourhoodN in Z, provided
that |Z| ≥ k. The k-complete neighbourhood N is a well defined object, while
there may be multiple sets of k-nearest neighbours of x

Lemma 10. Suppose that Z1, Z2 ⊂ U , and that x ∈ Zi. Suppose that Ni ⊂ Zi

is the k-complete neighbourhood of x in Zi, and suppose that N is the k-complete
neighbourhood of x in Z = Z1 ∪ Z2. Then N ⊂ N1 ∪N2.
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Proof. The set N is a set of nearest neighbours for x in Z1 ∪ Z2, and Zi ∩N is
a set of nearest neighbours for x in Zi.

In effect, if z ∈ Zi is not in Zi ∩N then z is not in N , so that d(x, z) ≥ sN ,
while sN ≥ sZi∩N .

If there is an s < sN such that |Zi(x, s)| ≥ k, then |Z(x, s)| ≥ k for s < sN ,
and so N = Z(x, sN ) is not k-complete. It follows that |Zi(x, s)| < k for s < sN ,
and so Zi(x, sN ) ⊂ Ni.

Thus, N ⊂ N1 ∪N2, as claimed

Lemma ?? leads to a method of approximating k-complete neighbourhoods
for a point x in a very large data set U .

In effect, if Zi ⊂ U , 1 ≤ i ≤ p is a collection of subsets of U with x ∈ Zi,
and if Ni ⊂ Zi is a k-complete neighbourhood of x in Zi, then the k-complete
neighboourhood N of x in Z1 ∪ · · · ∪ Zp is the k-complete neighbourhood of x
in the much smaller object N1 ∪ · · · ∪Np.

3 Topological constructions

Suppose that (Z, d) is a finite ep-metric spac.
Suppose given a set of neighbourhoods Nx for each x ∈ Z. Recall that the

neighbourhood Nx has a diameter s(Nx) <∞.
Each neighbourhood Nx determines a filtered subcomplex V (Nx) ⊂ V (Z)

of the Vietoris-Rips complex V (Z).
The inclusions {x, y} ⊂ V (Nx), y ∈ Nx − {x}, induce filtered simplicial

complex maps
R(Nx) := ∨y ∆1

≥s ⊂ V (Nx) ⊂ V (Z). (1)

The copies of ∆1 are defined by rays {x, y} of weights s.

Remark 11. More properly, if the ray {x, y} has weight t = d(x, y), then the
corresponding 1-simplex of R(Nx) is the filtered simplex ∆1

≥t such that

(∆1
≥t)s =

{
∅ if s < t, and

∆1 if s ≥ t.

It is better, sometimes, to say that R(Nx) is covered by simplices ∆1
≥s

corresponding to rays {x, y} of weight s. This simply reflects the fact that the
obvious map

⊔y ∆1
≥s → ∨y ∆1

≥s = R(Nx)

is an epimorphism of filtered complexes.

The full union
R(N) = ∪x R(Nx) ⊂ V (Z)

is the ray subcomplex of V (Z), for the collection of neighbourhoods N =
{Nx}.
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The ray subcomplex R(N) is a filtered (or weighted) graph. If the neighbour-
hoodsNx consist of k-nearest neighbours, then R(N) is the k-nearest neighbours
(kNN) graph.

The neighbourhoods Nx generate an abstract simplicial complex V (N) ⊂
V (Z) whose simplices are the subsets σ ⊂ Nx of the various neighbourhoods
Nx. The resulting filtered simplicial complex can be written

V (N) = ∪x V (Nx) ⊂ V (Z).

The subcomplex V (N) of V (Z) is called the neighbourhood complex.

The inclusions R(Nx) ⊂ V (Nx) induce an inclusion R(N) ⊂ V (N), so we
have inclusions

R(N) ⊂ V (N) ⊂ V (Z) (2)

of filtered complexes, with corresponding inclusions

Rs(N) ⊂ Vs(N) ⊂ Vs(Z) (3)

of the various filtration stages.
The induced functions

π0Rs(N)→ π0Vs(N)→ π0Vs(Z)

in path components (or clusters) are surjective for all parameters t, since all
complexes have the same vertex set, namely Z.

Remark 12. The neighbourhood complex V (N) = ∪x V (Nx) is covered by the
subcomplexes V (Nx), in the sense that there is a surjection⊔

x

V (Nx)→ V (N).

This covering has an associated Čech resolution, and there is a natural coequal-
izer ⊔

x,y

Vs(Nx) ∩ Vs(Ny) ⇒
⊔
x

Vs(Nx)→ Vs(N)

in simplicial sets, where s is the distance parameter. The path component
functor preserves colimits, so there is a coequalizer⊔

x,y

π0(Vs(Nx) ∩ Vs(Ny)) ⇒
⊔
x

π0Vs(Nx)→ π0Vs(N)

in diagrams of sets, or clusters.
The directed set π0Vs(N) is the cluster object given by the mapper construc-

tion for the covering of Z by the family of neighbourhoods {Nx} [?].
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Lemma 13. Suppose that x, y ∈ Z. There is a path from x to y in R(N) if and
only if there is a sequence of elements

x = x0, x1, . . . , xr = y

and neighbourhoods Nxi of xi, such that Nxi ∩Nxi+1 ̸= ∅ for all i.

Proof. Suppose that
x = z0, . . . , zp = y

is a sequence of points such that xi+1 ∈ Nxi
or xi ∈ Nxi+1

for neighbourhoods
Nxi

and Nxi+1
of xi and xi+1, respectively. If xi+1 ∈ Nxi

then Nxi
∩Nxi+1

̸= ∅.
Similarly, if xi ∈ Nxi+1

then Nxi
∩Nxi+1

̸= ∅.
Suppose, conversely, that v ∈ Nxi ∩Nxi+1 . Then there is an edge xi → v in

Nxi and an edge xi+1 → v in Nxi+1 , so that there is a path

xi → v ← xi+1

through neighbourhoods.

By definition, the ray complex R(N) is a filtered subcomplex of V (Z). The
subcomplex Rs(N) ⊂ Vs(Z) is generated by rays {x, y} with d(x, y) ≤ s.

We have the following analog of Lemma ??:

Lemma 14. Suppose that x, y ∈ Z. For each parameter value s, there is a path
from x to y in Rs(N) if and only if there is a sequence of elements

x = x0, x1, . . . , xr = y

and neighbourhoods Nxi
of xi, such that (Nxi

)s ∩ (Nxi+1
)s ̸= ∅ for all i.

4 Bounded neighbourhoods

4.1 k-bounded neighbourhoods

In some examples (such as stellar charts), it is natural that neighbourhoods N
of x have bounded cardinality and radius: |N | ≤ k+1 for some k and s(N) ≤ S,
with both k and S fixed.

From this point of view, for a fixed x, the k-bounded neighbourhoods N
of x are the subsets of Z(x, S) which contain x and have at most k+1 elements.
Again, Z(x, S) is the ball of radius S in Z, which is centred on x.

We assume that k ≥ 1 henceforth.

A point x can have more than one k-bounded neighbourhood. The k-
bounded neighbourhoods of x are ordered by inclusion, and the family has
maximal elements. We have the following:

1) The maximal k-bounded neighbourhboods N ⊂ Z(x, S) either have car-
dinality k + 1 or satisfy N = Z(x, S).
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2) All sets N of k-nearest neighbours with s(N) ≤ S are maximal.

3) If N = {x} is maximal, then x is an isolated point for the parameter S.

The corresponding neighbourhood complex V (k − N) is the filtered sub-
complex of V (Z) that is generated by the subobjects V (N) for all k-bounded
neighbourhoods N of all x, and R(k−N) is the associated ray subcomplex. As
in (??), we have a sequence of inclusions

R(k −N) ⊂ V (k −N) ⊂ V (Z).

If t ≤ S and σ = {x0, . . . , xn} is an n-simplex of V (Z)t with n ≤ k, then σ
is a k-bounded neighbourhood of x0. In effect, σ has at most k+1 elements, of
maximal distance t ≤ S from x0. It follows that Vt(k−N)n = Vt(Z)n for n ≤ k,
or that skk Vt(k − N) = skk Vt(Z). In particular, sk1 Vt(k − N) = sk1 Vt(Z)
since k ≥ 1, and so the simplicial sets Vt(k−N) and Vt(Z) have the same path
components.

We have shown the following:

Lemma 15. Suppose that t ≤ S, and construct the neighbourhood complex
V (k −N) from k-bounded neighbourhoods as above. Then the function

π0Vt(k −N)→ π0Vt(Z)

is a bijection.

Suppose that t ≥ S, and that {x, y} is a 1-simplex of Vt(k − N). Then
{x, y} ⊂ N for a k-bounded neighbourhood N of some z. Further, d(z, x) ≤
s(N) and d(z, y) ≤ s(N), so that d(z, x), d(z, y) ≤ s(N) ≤ S ≤ t. It follows that
there is a path

x← z → y

in Rt(k −N), and so the function

π0Rt(k −N)→ π0Vt(k −N)

is a bijection.
We have proved

Lemma 16. Suppose that t ≥ S. Then the induced function

π0Rt(k −N)→ π0Vt(k −N)

is a bijection.

Write
R(k −N) = ∪t Rt(k −N).

Then the map
π0Rt(k −N)→ π0R(k −N)

is a bijection for t ≥ S, because Rt(k −N) = R(k −N) in that range.
We therefore have the following:

13



Corollary 17. The functions

π0R(k −N)← π0Rt(k −N)→ π0Vt(k −N)

are bijections for all t ≥ S.

Write
N(x) = ∪N V (N)

in V (Z), where the union is indexed over all k-bounded neighbourhoods N of
x. Let R(x) ⊂ N(x) be the associated ray subcomplex. We have the inclusions

V R(x) ⊂ V N(x) ⊂ V (Z(x, S)).

Suppose that t ≤ S and n + 1 ≤ k. Suppose that σ = {x0, . . . , xn} is a
non-degenerate n-simplex of V (Z(x, S))t. Write

σx = {x, x0, . . . , xn}.

Then |σx| ≤ k + 1, so that σx is a k-bounded neighbourhood of x, and so
σ = d0σx is in the image of the composite

V (σx)t → V N(x)t → V (Z(x, S))t.

It follows that skk−1 VtN(x) = skk−1 Vt(Z(x, S)) for t ≤ S. In particular,
the map

π0VtN(x) = π0Vt(Z(x, S))

is a bijection if k ≥ 2 and t ≤ S.
Suppose that t ≥ S, and that y and z are vertices ofN(x). Then d(x, y), d(x, z) ≤

S ≤ t, and it follows that the map

∗ = π0R(x)t → π0N(x)t

is a bijection.
Every y ∈ Z(x, S) is a member of a k-bounded neighbourhood {x, y} since

k ≥ 1. It follows that the maps

π0R(x)t → π0N(x)t → π0VtZ(x, S)

are surjective.
We have proved:

Lemma 18. Suppose that the complexes N(x) and R(x) are defined as above.
Suppose that k ≥ 2. Then we have the following:

1) If t ≤ S then the map π0N(x)t → π0Vt(Z(x, s)) is a bijection.

2) If t ≥ S then the maps

∗ = π0R(x)t → π0N(x)t → π0V (Z(x, S))t

are bijections.
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4.2 Complete neighbourhoods

Suppose that Z is a finite ep-metric space, and that each x ∈ Z has a fixed
complete neighbourhood Nx = Z(x, rx). Form the associated filtered complexes

R(N) ⊂ V (N) ⊂ V (Z),

for Z and the system of neighbourhoods N = {Nx}.

Example 19. Suppose that S > 0 is a fixed distance parameter and k > 1 is a
fixed integer.

Say that a neighbourhood Nx of x ∈ Z is complete k-bounded if Nx has
the form

Nx = Z(x, sx) ∩ Z(x, S),

where Z(x, sx) is the unique k-complete neighbourhood of x (see Section 2).
There are two possibilities: Nx = Z(x, sx), in which case Nx is k-complete,

or Nx = Z(x, S) and |Z(x, S)| < k. In either case, the neighbourhood Nx is
uniquely determined and is complete.

The use of complete k-bounded neighbourhoods gives a different perspective
for the stellar chart example. For a fixed (and appropriate) distance S and
positive integer k, the complete k-bounded neighbourhoods Nx of stars x in a
globular cluster would be k-complete neighbourhoods of small radius, while stars
in an outer spiral arm are more likely to have neighbourhoods Nx of smaller
cardinality.

Lemma 20. Suppose that Z is a finite ep-metric space, and that each x ∈ Z
has a fixed complete neighbourhood Nx = Z(x, rx).

1) Suppose that t ≤ rx for all x. Then the functions

π0Rt(N)→ π0Vt(N)→ π0Vt(Z)

are bijections.

2) Suppose that t ≥ rx for all x. Then the map

π0Rt(N)→ π0Vt(N)

is a bijection.

3) Suppose that t ≥ S ≥ rx for all x. Then the map

π0RS(N)→ π0Rt(N)

is a bijection.

Proof. For 1), suppose that {x, y} is a 1-simplex of length t. Then y ∈ Nx since
t ≤ rx, and {x, y} is a ray of Nx. It follows that there are equalities of 1-skeleta

sk1 Rt(N) = sk1 Vt(N) = sk1 Vt(Z),
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and the statement follows.
For statement 2), suppose that {x, y} is a 1-simplex of Vt(Nz) ⊂ Vt(N).

Then there are 1-simplices x ← z → y in Vt(Nz) since t ≥ rz. This is true for
all z, and it follows that the function

π0Rt(N)→ π0Vt(N)

is a bijection.
To prove statement 3), every ray (1-simplex) {x, y} of R(N) has length ≤ S,

so that RS(N) = Rt(N).

Corollary 21. Suppose that t ≥ S ≥ rx for all x ∈ Z. Then the inclusion
VS(N) ⊂ Vt(N) of neighbourhood complexes induces a bijection

π0VS(N)→ π0Vt(N).

Proof. The Corollary follows from statements 2) and 3) of the Lemma ??

Remark 22. Suppose that Z ′ is the subset of elements x ∈ Z such that
Z(x, rx) = {x}, and let Z” = Z − Z ′. Then

1) Vt(Z) = Z ′ ⊔ Vt(Z
′′),

2) V (N)t = Z ′ ⊔ V (N ′′)t,

3) R(N)t = Z ′ ⊔R(N ′′)t,

for t ≤ rz, all z, where Z ′ is a discrete set. Here,

Z ′′ = ∪y∈Z′′ Z(y, ry),

and N ′′ is the system of neighbourhoods Z(y, ny) for y ∈ Z ′′.

5 The UMAP construction

One starts with a neighbourhood Nx for each vertex x of a data set Z, with
positive weights d(x, y) for each y ∈ Nx−{x}. The subset {x, y} for such a y is
said to be a ray.

The weight d(x, y) defines an ep-metric space structure on the set {x, y}.
Form the ep-metric space

Zx = ∨y∈N(x)−{x} {x, y},

from the rays {x, y}, for each x ∈ Z. This structure is extended to an ep-metric
space structure (Z,Dx) on the full set of vertices Z of Γ, by setting

(Z,Dx) = (⊔z∈Z−Zx
{z}) ⊔ Zx

in ep-metric spaces.
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The ep-metric space

(Z,D) = ∨x∈Z (Z,Dx)

and the UMAP complex

V (Z,N) = ∨x∈Z V (Z,Dx)

are formed by amalgamating along vertices (elements of Z), in ep-metric spaces
and filtered complexes, respectively.

It is crucial, for these ep-metric space constructions, to know that the cate-
gory of ep-metric spaces is cocomplete — see Section 1.

The following excision statement for path components is Lemma 2 of [?]:

Theorem 23. The canonical map V (Z,N)→ V (Z,D) induces isomorphisms

π0V (Z,N)s
∼=−→ π0V (Z,D)s

for s finite.

Theorem ?? is proved by observing that distances in (Z,D) are computed
from paths through neighbourhoods Nx.

We shall need the following local computation:

Lemma 24. Suppose that y ∈ N(x)− {x} defines the ray {x, y}. Then

d(x, y) = Dx(x, y).

in Zx.

Proof. The number Dx(x, y) is the minimum of all sums
∑

j d(xj , xj+1), for
paths

P : x = x0, x1, . . . , xp = y

through rays in Zx. The ray {xp−1, y} must be the ray {x, y}, so that

Dx(x, y) ≥
∑
j

d(xj , xj+1) ≥ d(x, y).

The subobject {x, y} is a ray, so that {x, y} is a path, andDx(x, y) ≤ d(x, y).

Each y ∈ Nx − {x} determines an inclusion of filtered complexes

V ({x, y}) ⊂ V (Zx, Dx) ⊂ V (Z,D).

The simplicial set Vt({x, y} consists of vertices {x, y} for t < dx(x, y), and has
1-simplices

{x} ⊂ {x, y} ⊃ {y}

for t ≥ dx(x, y).

17



Remark 25. Recall that V ({x, y}) is the barycentric subdivison of a filtered
1-simplex that would be defined by imposing a total order on the set {x, y}.

Suppose that {x, u} is a ray in Nx and that {y, v} is a ray of Ny, and consider
the composite monomorphisms

V ({x, u}) ⊂ V (Zx) ⊂ V (Z), V ({y, v}) ⊂ V (Zy) ⊂ V (Z).

Suppose that dx(x, u) ≤ dy(y, v).
Generally, V (X) = BP (X), where P (X) is a poset of generating simplices.

In the case at hand, therere is a pullback diagram

BP ({x, u} ∩ {y, v}) //

��

BP ({y, v})

��
BP ({x, u}) // BP (Z)

The intersection {x, u}∩{y, v} is at most a 2-element set. If {x, u}∩{y, v} =
∅ the pullback is empty, and if {x, u} ∩ {y, v} is a point the pullback is a point.

If {x, u} ∩ {y, v} is a 2-element set, then {x, u} = {y, v}, and there is a
commutative diagram

BP ({x, u})

&&

BP ({y, v}θoo

xx
BP (Z)

where θ “reduces weight”. It follows, in this case, that there is a pullback

BP ({y, v}) 1 //

θ

��

BP ({y, v})

��
BP ({x, u}) // BP (Z)

(4)

The ray complex R(Nx) ⊂ V (Zx) is the wedge of rays

R(Nx) = ∨y∈Nx−{x} V ({x, y}).

The filtered complex monomorphisms

ϕx : R(Nx)→ V (Zx, Dx)→ V (Z,D),

together define a monomorphism

ϕ : R(N) = ∪x∈Z R(Nx) ⊂ V (Z),

and we say that the union R(N) is the ray subcomplex of V (Z). The ray
complex R(N) is a weighted graph.
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The ray complex R(N) is a union of (or is covered by) filtered subcomplexes
V ({x, y}), which are defined by rays {x, y} and their weights d(x, y). The in-
tersections (pullbacks)

BP ({y, v} ∩ {y, v}) //

��

BP ({y, v})

��
BP ({x, u}) // R(N)

are constructed in V (Z) as above, since R(N) ⊂ V (Z) is a monomorphism. It
follows that the ray complex R(N) is a union of rays, with possible adjustments
of weights in intersections, as in the pullback diagram (??).

Remark 26. The present description of the ray complex R(N) is independent
of distances in the space (Z,D). It generalizes the description of the ray complex
that appears in Section 3, which uses a fixed ambient ep-metric.

There is, finally, an excision result that makes R(N) a candidate for the
UMAP graph, as follows:

Theorem 27. The filtered complex map ϕ : R(N) ⊂ V (Z,D) induces isompor-
phisms

ϕ∗ : π0Rs(N)
∼=−→ π0Vs(Z,D)

for all s ≥ 0.

Proof. The proof is similar to that of Theorem ??.
The map ϕ is the identity on vertices, so the functions ϕ∗ are surjective.
Suppose that there is a 1-simplex {z, w} of V (Z,D)s. Then there is a path

z = x0, x1, . . . , xp = w

through rays {xi, xi+1} such that

p∑
i=0

d(xi, xi+1) ≤ s.

by Lemma ??. But then d(xi, xi+1) ≤ s for all i, so that z and w are in the
same path component of the simplicial set R(N)s.

It follows that the functions ϕ∗ are injective.

6 Weighted directed graphs

A weighted directed graph Γ consists of a set of edges e : x→ y, such that each
edge e has a weight w(e) > 0. For the present discussion, the vertices of Γ are
faces of the edges. I write Z for the set of vertices of Γ.
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Trivial examples are given by 1-skeleta sk1 K of oriented simplicial complexes
K, with weights w(e) = 1 for each 1-simplex e : x → y, and such that every
vertex is a face of some non-degenerate 1-simplex e.

A weighted directed graph Γ is said to be sparse if all vertices x of Γ have
low valence. This means that each vertex of Γ is in the boundary of a small (i.e.
computable) number of edges.

Suppose that x is a vertex of a transfer graph Γ. A path P : x 99K y from
x to another vertex y in Γ is a string of edges

P : x = y0
e1−→ y1

e2−→ . . .
ep−→ yp = y. (5)

Say that the integer p is the length ℓ(P ) of the path P .

Remark 28. The collection of all paths P : x 99K y in the graph Γ form
a weighted graph P (Γ) having the same vertices as the graph Γ. The paths
P : x 99K y and Q : y 99K z are composeable: the concatenation of P with Q
defines a path P ◦Q : x 99K z. Thus, P (Γ) has more structure: P (Γ) is the free
category on the graph Γ.

The path graph P (Γ) is not sparse in general.

The weight w(P ) of the path P can be defined by

w(P ) = min
i
{w(ei)}. (6)

Remark 29. The definition of the weight of a path is somewhat arbitrary, and
depends on applications. The assignment of (??) is motivated by graphs of data
transfers, which are discussed below. One could, alternatively, set

w(P ) =
∑
i

w(ei).

Fix a positive integer k.

The neighbourhood Nk(x) is the collection of all vertices y, which appear
in paths

Q : z0 → z1 → · · · → zp,

having length p = ℓ(Q) ≤ k, such that x = zi for some i

We assign a weight (or distance) d(x, y) for all y in the neighbourhood Nk(x).
For y ∈ Nk(x), define the weight sum Σ(x, y) by

Σ(x, y) = (
∑

P :x99Ky,ℓ(P )≤k

w(P )) + (
∑

Q:y99Kx,ℓ(P )≤k

w(Q)).

In a graph of transactions, the weight sum Σ(x, y) represents the total value
of all transactions between x and y. If Σ(x, y) has a large value, then there
is more business between x and y, and these objects should be closer in some
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sense. To express this relationship, use the Shannon information function to
define a distance

d(x, y) = e−Σ(x,y) (7)

for y ∈ Nk(x).
Other approaches to defining a distance d(x, y) for the vertices y of Nk(x)

are certainly possible.

We end up with a computable neighbourhood Nk(x) of vertices in a sparse
directed graph Γ for each of its vertices x, with distances (weights) d(x, y) for
y ∈ Nk(x)− {x}.

These are the inputs for the UMAP construction, which is described in
Section 4.

Example 30 (Data transfers). A data transfer e : x → y from a computer
account x to a different account y has a weight w(e), which is the number of
bytes transferred. The transfer e also has source and target time stamps, s(e)
and t(e), respectively, with s(e) < t(e). Thus (provisionally), a graph Γ of data
transfers has edges e : (x, s(e)) → (y, t(e)) with x ̸= y, and its vertices consist
of pairs (x, t), where x is a computer account and t is either a source or a target
timestamp for some edge.

There may be multiple vertices (x, t) for a fixed account x. Suppose that
t0 < t2 < · · · < tp are the timestamps for a fixed account x. Say that the list
{t0, . . . , tp} is the simplex of timestamps for the account x.

For x ̸= y, an edge E : (x, s) → (y, t) of the transfer graph Γ consists of a
transfer e : (x, s(e))→ (y, t(e)), together with relations s ≤ s(e) and t(e) ≤ t in
the simplices of timestamps for the accounts x and y, respectively. The weight
w(E) is the weight w(e) of the transfer e. The set vertices Z of Γ consists of all
pairs (x, s) of accounts x and timestamps s of transfers.

If all timestamps lie within a small enough interval, then the transfer graph
Γ is sparse.

This example motivates the definitions of weights of paths and distances
within neighbourhoods that are seen above.

Explicitly, a path

P : (x, s) = x0
E1−−→ x1

E2−−→ . . .
Ep−−→ xp = (y, t)

in Γ consists of edges

Ei : xi = (xi, si)→ (xi+1, si+1) = xi+1

with xi ̸= xi+1, and each such edge has weight w(Ei).
The weight w(P ) of the path P is defined by

w(P ) = min
i
{w(Ei)},

as in (??)). The weight w(P ) represents the maximum amount of data that
could be transferred from (x, s) to (y, t) along the path P .
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Fix a positive integer k and an element x = (x, s) in the transfer graph Γ,
and define the neighbourhood Nk(x) as vertices of paths crossing x of length at
most k.

The weight sum Σ(x, y) for y ∈ Nk(x) is defined by

Σ(x, y) = (
∑

P :x99Ky,ℓ(P )≤k

w(P )) + (
∑

Q:y99Kx,ℓ(P )≤k

w(Q)),

and the weight d(x, y) of the ray {x, y} has the form

d(x, y) = e−Σ(x,y).

Remark 31 (Undirected graphs). The directed structure for the graph Γ
is a central feature of the examples discussed above. Analogous local to global
methods apply equally well to construct ep-metric spaces and UMAP complexes
for undirected graphs.

Suppose that Ω is a sparse weighted graph, with weights w(e) for the edges
e of Ω. One assumes that the vertices of Ω are faces of its edges.

Suppose that x is a vertex of Ω. Say that y ∈ Nk[x] if there is a path (path),
or string of edges

P : x = x0
e1↔ x1

e2↔ . . .
ep↔ xp = y

with p ≤ k.
Again there are choices, but define the weight w(P ) of the path P : x ↔ y

by
w(P ) = min

i
{w(ei)}.

Fix a vertex x and a positive integer k. Define Nk(x) to be the set of all
vertices of Ω which lie on paths of length ℓ(P ) at most k that pass through x.

Write
Σ(x, y) =

∑
P :x99Ky,ℓ(P )≤k

w(P ),

and set
d(x, y) = e−Σ(x,y)

for y ∈ Nk(x).
One uses the weights d(x, y) to construct an ep-metric on the neighbourhood

Nk(x). These ep-metrics patch together, to give an ep-metric on the full set Z
of vertices of Ω.

7 Bags of words

In the “bag of words” model for natural language processing (see, for example
[?]), one starts with a collection C = {C1, . . . , CN} of documents Ci, where
each Ci = (ti,1, . . . , ti,Mi

) is a sequence of tokens (ie. words, phrases, etc.),
with possible repetitions. The sequence C is the corpus.
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The sequence Ci is a function

Ci : M i → T ,

where T is the set of distinct tokens in all Ci, and M i = {1, 2, . . . ,Mi}. The
sequence Ci may have repeats, so the function Ci is not injective in general.

The usual thing is to amalgamate some tokens (by root words, or whatever),
to form a surjective map ℓ : T → L. The set L is the vocabulary and its
elements are called words.

Write p for the composite function

p : ⊔i M i
C−→ T ℓ−→ L,

and let pi : M i → L be the restriction of p to the summand M i.
We assume that there are no common tokens (“stop words”) or rare tokens

in the set T , however these are determined. This means that the fibres p−1(w)
of the function p are neither too large nor too small, and in particular are
computationally manageable. The function p and its fibres are the objects of
interest for this discussion.

The fibres p−1(w) are the instances of the word w ∈ L in the corpus C.

Remark 32. In more generality, we could have functions pi : M i → Z which
cover a set Z, in the sense that the amalgamated function

p : ⊔i M i → Z

is surjective. Here, the restriction of p to the summand M i is pi. One assumes
that the fibres p−1

i (z) for z ∈ Z are computationally manageable (or tractable
in the sense of the next section), as is the collection of functions {pi}.

Subject to size assumptions on the cardinals M i and the collection of func-
tions pi, the following discussion can be applied in such a setting.

One could even replace the sets M i with metric spaces in the discussion that
follows.

Write Li for the image of the restricted function

pi = ℓi : M i
Ci−→ T ℓ−→ L.

The composite pi restricts to a surjective function pi : M i → Li, and there is a
commutative diagram of functions

M i

pi //

��

Li

��
⊔i M i p

// L

in which the vertical maps are inclusions.
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Each set M i has a metric d with d(x, y) = |y − x|.

Suppose that r is a positive integer. Fix a word v ∈ L, and suppose that
p−1
i (w)≤r is the set of all elements y ∈ p−1

i (w) such that d(x, y) ≤ r for some
x ∈ p−1

i (v). Then we have

p−1
i (w)≤r = p−1

i (w) ∩ (∪x∈p−1(v) [x− r, x+ r])

in the set M i. The subsets p−1
i (w)≤r filter the fibre p−1

i (w). Observe that
p−1
i (v)≤r = p−1

i (v).

Set
di[r](v, w) =

∑
x∈p−1

i (v),y∈p−1
i (w),d(x,y)≤r

d(x, y), (8)

and define
d[r](v, w) =

∑
i

di[r](v, w)

for all v, w ∈ L.
The number di[r](v, w) is non-zero if and only if there are elements x ∈

p−1
i (v) and y ∈ p−1

i (w) such that d(x, y) ≤ r, and d[r](v, w) ̸= 0 if and only if
di[r](v, w) ̸= 0 for some i.

In particular, di[r](v, v) is the sum of the distances d(x, y) between x, y ∈
p−1
i (v) such that d(x, y) ≤ r, and di[0](v, v) = 0. It follows that d[r](v, v) can

be non-trivial for r > 0, and d[0](v, v) = 0.

Take all elements x of the fibres p−1
i (v) and form all intervals [x − r, x + r]

in M i. The union

Nv[r] = ∪i (∪x∈p−1
i (v) pi[x− r, x+ r]) ⊂ L. (9)

is a neighbourhood of v in L.
Observe that Nv[0] = {v}. Also, Nv[r] ⊂ Nv[s] for r ≤ s, and ∪r Nv[r] = L,

so that the subsets Nv[r] filter the set of words L.

Subject to fixing a positive integer r, the set Nv[r] is a neighbourhood for
v ∈ L, and the number d[r](v, w) is the weight of w ∈ Nv[r].

As in Section 5, the UMAP construction assembles the weighted neighbour-
hoods (Nv[r], d[r]), v ∈ L, to form a the UMAP complex V (L, N [r]), an ep-
metric space (L, D[r]), and a ray complex R(N [r]) ⊂ V (L, D[r]), all of which
compute the same clusters.

8 Sampling

Suppose that the universal data set U has an ep-metric space structure, but
with no other information.

In this case, one approximates (or discovers) a neighbourhood Nx for a given
point x ∈ U with a brute force method that is based on sampling techniques
and construction of k-complete neighbourhoods within samples.
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Suppose that Z is a randomly chosen subset of U (a sample), and that Z is
tractable in the sense that there is a cardinality bound |Z| ≤ M , where data
sets of size at most M can be analyzed by available computational devices. We
assume that x ∈ Z.

For such a subset Z the distance function dx : Z → [0,∞), with dx(z) =
d(x, z), can be computed, and the image dx(Z) of dx defines a tractable subset
of the interval [0,∞). The set Z is a disjoint union of fibres

Z = ⊔s∈dx(Z) d
−1
x (s)

of the distance function dx.
Suppose that k is a fixed choice of positive integer with k ≤ |Z|.
The element x has a uniquely defined k-complete neighbourhood N in Z, as

in Section 2, which is the smallest complete neighbourhood Z(x, s) such that
|Z(x, s)| ≥ k. The neighbourhood N is a union of fibres d−1

x (t) for smallest
values of t,

This construction can be repeated, in parallel, for an appropriately sized
collection of samples Z1, . . . , Zp that contain x, with distance functions dx :
Zi → [0,∞). Each sample Zi has a uniquely defined (and computable) k-
complete neighbourhood Ni of x, and the k-complete neighbourhood N of x in
the union ∪i Zi is a k-complete neighbourhood of x in the smaller object ∪i Ni,
by Lemma ??.

There are various ways to invoke the samples Zi:

1) Starting with a k-complete neighbourhood Nx of x in a sample Zx, choose
samples Zy for each y ∈ Nx, with associated k-complete neighbourhoods Ny ⊂
Zy. The union ∪y∈Nx Ny contains a k-complete neighbourhood N ′

x, which is
potentially a better approximation of a k-complete neighbourhood of x in the
universe U .

This sequence of steps is an analogue of the k-nearest neighbour algorithm
of [?].

2) The determination of a k-complete neighbourhood N of x in V for some V ⊂
U can be extended to larger subsets of U , subject to computational constraints,
by adding more tractable samples to V . This is again a simple application of
Lemma ??.

3) If Z1, . . . , Zp is a tractable collection of tractable samples in U , then we
can find a k-complete neighbourhood Ny in Z = ∪i Zi for any y ∈ Z. The
corresponding subcomplexes V (Ny) ⊂ V (Z) and R(Ny) ⊂ V (Ny) determine
filtered subcomplexes

∪y∈Z R(Ny) ⊂ ∪y∈Z V (Ny),

which lead to a UMAP-style analysis that computes the clusters of V (Z), and
approximates the clusters of all V (U).

The sampling technique displayed here is completely brute force. It only
approximates clusters and neighbouhoods of points, and does not speak to the
entire data set U .
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The method can be refined in the presence of global constraints, such as the
local uniformity assumption of [?] that produces sets of k-nearest neighbours
up to a probability estimate.
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