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The internal language hypothesis

The Internal Language Hypothesis

Homotopy type theory is an internal language for (∞, 1)-toposes.

I propose this as analogous to the Homotopy Hypothesis,
Stabilization Hypothesis, Cobordism Hypothesis, etc. from higher
category theory.

“One can regard the above hypothesis, and those to follow,
either as a conjecture pending a general definition. . . or as a
feature one might desire of such a definition.”

– John Baez and Jim Dolan,

Higher-Dimensional Algebra and
Topological Quantum Field Theory
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Applications of the internal language hypothesis

The Internal Language Hypothesis

Homotopy type theory is an internal language for (∞, 1)-toposes.

Some theorems that are proven:

• (∞, 1)-toposes are presented by CwAs w/ HITs1

• Some ∞-object classifiers are presented by CwA universes2

• Lex (∞, 1)-categories are equivalent to CwAs w/ Σ, Id3

Theorems we still need to prove:

• The syntax of type theory is the initial CwA w/ . . .

• All ∞-object classifiers are presented by CwA universes

Definitions we still need to make:

• What is a general notion of “higher inductive type”?

• What is an “elementary (∞, 1)-topos”?
1Cisinski, Gepner–Kock, Lumsdaine–S.
2Voevodsky, S.
3Kapulkin–Lumsdaine, Kapulkin–Szumi lo
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Applications of the internal language hypothesis

The Internal Language Hypothesis

Homotopy type theory is the internal language of (∞, 1)-toposes.

Definitions we should not make:

• Homotopy type theory consists of what’s true in simplicial sets.

• Homotopy type theory consists of what’s true in cubical sets.

If you will forgive me saying it again

• One model is not enough!

• Please don’t talk about “the intended model”!

Why?

One reason: applications of homotopy type theory to new results in
classical homotopy theory are much closer to our reach if we go
through other models (e.g. Blakers–Massey in Goodwillie calculus).
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What is an (∞, 1)-topos?

To a homotopy type theorist, the Internal Language Hypothesis can
be a “working definition” of an (∞, 1)-topos: a collection of objects
and morphisms that can interpret the types and terms of HoTT.

Examples

• ∞Gpd : types are ∞-groupoids (“spaces”)
(The ∞-version of the 1-topos Set)

• ∞GpdCop
: types are presheaves of ∞-groupoids on C

• Sh(X ): types are sheaves of ∞-groupoids on X

But the situation for functors between (∞, 1)-toposes is subtler.
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(∞, 1)-geometric morphisms

Definition

A logical functor L : E → S preserves all relevant structure.

Definition

A geometric morphism p : E → S is an adjoint pair p∗ : F � E : p∗
such that p∗ preserves finite limits.

Examples

• f : C → D a functor, f ∗ :∞GpdDop
�∞GpdCop

: Ranf
is a geometric morphism ∞GpdCop →∞GpdDop

.

• If f : X → Y is a continuous map, there is a geometric
morphism Sh(f ) : Sh(X )→ Sh(Y ).

• Any E has a unique geometric morphism p : E → ∞Gpd :
• p∗(A) = E(1,A) is the global sections
• p∗(X ) =

∐
X 1 is a discrete or constant object on X .

7 / 53



Internal languages for geometric morphisms?

Fact

A lot of interesting theorems in (∞, 1)-topos theory are not about
just one topos, but about diagrams of toposes and geometric
morphisms between them.

Example

A (∞, 1)-topos E is. . .

• ∞-connected if p∗ :∞Gpd → E is fully faithful

• locally ∞-connected if p∗ has a left adjoint

• ∞-compact if p∗ preserves filtered colimits

• . . .

Problem

Is there a version of homotopy type theory that can be an internal
language for diagrams of (∞, 1)-toposes and geometric morphisms?
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Applications of a theory in progress

We claim that yes, there is such a type theory, where the functors
p∗, p∗ appear as higher modalities. The fully general and
dependently typed version is still a work in progress, but already it
has been specialized to various applications:

• Internal universes in topos models (L.-Orton-Pitts-Spitters ’18)
• One modality [

• Spatial and real-cohesive type theory (S. ’17)
• Three modalities s a [ a ]

• Differential cohesion (L.-S.-Gross-New-Paykin-R.-Wellen – work
in progress)

• Six modalities s a [ a ] and < a = a &.

• Type theory for parametrized pointed spaces and spectra
(Finster-L.-Morehouse-R. – work in progress)

• One self-adjoint modality \ a \
• Non-cartesian “smash product” monoidal structure

• Directed type theory with cores and opposites (work in
progress)
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First steps in modal type theory

Suppose we have one geometric morphism p : E → S.
We might imagine a type theory with:

• An “E-type theory” Γ `E s : A

• A separate “S-type theory” ∆ `S t : B

• An operation p∗ making any S-type into an E-type
• An operation p∗ making any E-type into an S-type

• Functoriality rules for p∗ and p∗

• Adjunction rules for p∗ a p∗

• Higher functoriality rules for p∗ and p∗ on homotopies

• Higher adjunction rules for homotopies

• Coherence laws

• More coherence laws. . .
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Design principles for type theory and category theory

Type theory Category theory

Types should be defined
by introduction,

elimination, β and η
rules.

Objects should be defined
by universal properties.

Good type theories
satisfy canonicity and

normalization.

Structures defined by
universal properties are
automatically fully

coherent.
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Example: Cartesian products

Type theory Category theory

p : A× B

π1(p) : A π2(p) : B
A← A× B → B

a : A b : B

(a, b) : A× B

A

X A× B

B

π1(a, b) = a
π2(a, b) = b

correct composites

p = (π1(p), π2(p)) uniqueness
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Universal properties for adjunctions

Definition

A profunctor E −7−→ S is a category H equipped with a functor
H → 2 = (0→ 1), with fibers H0 = S and H1 = E .

• Hom-sets H(X ,A) of “heteromorphisms” for X ∈ S, A ∈ E
• With actions by arrows in E and S

Definition

• A left representation of H at X ∈ S is p∗X ∈ E with an
isomorphism E(p∗X ,A) ∼= H(X ,A).

• A right representation of H at A ∈ E is p∗A ∈ S with an
isomorphism S(X , p∗A) ∼= H(X ,A).

Insofar as they exist, we automatically have p∗ a p∗ since

E(p∗X ,A) ∼= H(X ,A) ∼= S(X , p∗A).
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A hierarchy of type theories

Dependent type theory is very complicated, so we build up in stages.

1 Unary type theory: no dependency, only one type in context.
Semantics in categories.

x : A ` s : B

2 Simple type theory: no dependency, multiple types in context.
Semantics in categories with products, or multicategories.

x : A, y : B, z : C ` s : D

3 Dependent type theory: types can depend on previous ones.
Semantics in lex categories (comprehension categories etc.)

x : A, y : B(x), z : C (x , y) ` s : D(x , y , z)
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Unary type theory for a profunctor

X typeS A typeE

x : X `S t : Y x : X `H s : A a : A `E s : B

x : X `S t : Y y : Y `S s : Z

x : X `S s[t/y ] : Z

a : A `E t : B b : B `E s : C

a : A `E s[t/b] : C

x : X `S t : Y y : Y `H s : A

x : X `H s[t/y ] : A

x : X `H t : A a : A `E t : B

x : X `H s[t/a] : B
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Unary type theory for an adjunction

A typeE

p∗A typeS
p∗-form

X typeS

p∗X typeE
p∗-form

(x : X ) `H (s : A)

(x : X ) `S (s] : p∗A)
p∗-intro

(x : X ) `S (s : p∗A)

(x : X ) `H (s] : A)
p∗-elim

(y : Y ) `S (t : X )

(y : Y ) `H (t[ : p∗X )
p∗-intro

(b : B) `E (s : p∗X ) (x : X ) `H (c : C )

(b : B) `E ((let x [ := s in c) : C )
p∗-elim

s]] = s s]
] = s (let x [ := t[ in c) = c

(let x [ := t in c[x [/y ]) = c[t/y ]
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Some examples

Example

S4 modal logic has a modality �, with �P sometimes interpreted as
“P is necessarily true”, satisfying laws:

�(P ∧Q) = �P ∧�Q �> = > �P → P �P → ��P

In other words, � is a product-preserving comonad.
Pfenning–Davies gave a type theory for �, and Reed decomposed it
as p∗p∗ for an adjunction p∗ a p∗, inspiring our framework.

Example

In a cohesive topos p : E → S:
• the objects of E are “spaces” or “manifolds”

• p∗X gives X the “discrete topology”

• p∗X is the underlying set of points of X
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Unary type theory for diagrams

M a category (the opposite “shape” of a diagram of toposes).

Unary modal type theory

• A unary type theory x : X `1m t : Y for each m ∈M.

• Hetero-judgments (x : X )m `p (s : A)n for each p : m→ n.

• Appropriate cut rules, and type operations as desired:

X typem

p∗X typen

A typen

p∗X typem

Semantics

It has semantics in categories H →M overM, where

• If all p∗ exist, the functor H →M is an opfibration.

• If all p∗ exist, the functor H →M is a fibration.

If p∗/p∗ all exist, H →M is a bifibration, hence equivalent to a
functorMop → Catradj.
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1-categories aren’t enough

Actually want functorsMop → Catradj whereM is a 2-category.

Examples

• IfM contains an adjunction, get an adjoint triple.

• IfM contains a monad, get an adjoint monad/comonad pair.

These arise naturally on local/cohesive/tangent toposes.

Definition (Hermida,Buckley)

A 2-functor π : H →M is:

• A local fibration if each functor on hom-categories
H(X ,A)→M(πX , πA) is a fibration (+ axioms).

• A 2-fibration if it is a local fibration and has p∗’s.

• A 2-opfibration if it is a local fibration and has p∗’s.

Theorem (Baković,Buckley)

(Locally discrete 2-bifib. H →M) ' (functorsMop → Catradj).
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Unary type theory for diagrams

M a 2-category (the opposite “shape” of a diagram of toposes).

Unary modal type theory (Licata-S. ’16)

• A unary type theory x : X `1m t : Y for each m ∈M.

• Hetero-judgments (x : X )m `p (s : A)n for each p : m→ n.

• Appropriate cut rules and type operations p∗, p∗

• Structural rules for 2-cells u : p⇒ q : m→ n

(x : X )m `q (s : A)n
(x : X )m `p (u∗s : A)n

Semantics

Locally discrete 2-bifibrations H →M, hence functors
Mop → Catradj.

The objects ofM are sometimes called modes (cf. modal logic).
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Simple type theory for an adjunction

In unary type theory, we can think of (x : X ) `H (s : A) as
representing a morphism p∗X → A.

Idea for simple type theory

Allow a term in an E-type to depend on multiple variables, some in
S-types and others in E-types.

• (x : X )S , (y : Y )S , (a : A)E , (b : B)E ` (t : C )E represents a
morphism p∗X × p∗Y × A× B → C .

• This turns out to require/imply that p∗ preserves products.

• (x : X )S ` (t : C )E is the old (x : X ) `H (t : C ).

• (a : A)E ` (t : C )E is the old (a : A) `E (t : C ).

• Still have (x : X )S ` (s : Y )S , the old (x : X ) `S (s : Y ).
Terms in S-types are not allowed to depend on variables in
E-types. “Only left adjoints can appear in contexts.”
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Simple type theory for an adjunction, rules

ΓS ` (s : A)E

ΓS ` (s] : p∗A)S
p∗-intro

ΓS ` (t : p∗A)S

ΓS ,∆E ` (t] : A)E
p∗-elim

ΓS ` (t : X )S

ΓS ,∆E ` (t[ : p∗X )E
p∗-intro

ΓS ,∆E ` (t : p∗X )E ΓS ,∆E , (x : X )S ` (c : C )E

ΓS ,∆E ` ((let x [ := t in c) : C )E
p∗-elim
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Towards profunctors for simple type theory

On the categorical side, we should replace:

• categories  cartesian monoidal categories

• 2-categories  cartesian monoidal 2-categories

• objects in a 2-category  cartesian monoidal objects

Definition

A cartesian monoidal object m ∈M is one with right adjoints to
∆ : m→ m×m and ! : m→ 1.
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Cartesian monoidal profunctors

LetM be the cartesian monoidal 2-category freely generated by two
cartesian monoidal objects e, s and a cartesian morphism p : s→ e.

• Objects like s× s× e× e× e

• Morphisms like s× s→ s and e× e× e→ e and
s× s× e× e× e→ e× e× e× e× e→ e

Definition

A cartesian monoidal profunctor E −7−→ S is a cartesian monoidal
local fibration H →M with fibers He = E and Hs = S.

• Think of the fiber Hs×s×e×e×e as S × S × E × E × E
(“Contexts of a specified length and shape”)4

• Heteromorphisms like (Xs,Ys,Ae,Be,Ce)→ De.

• Local fibration condition gives [(A,A)→ B] [A→ B]

4
This isn’t quite true, but the problem goes away if we use cartesian 2-multicategories.
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Simple modal type theory

LetM be a cartesian monoidal 2-category.

Simple modal type theory (Licata-S.-Riley ’17)

• A class of types for each m ∈M (the modes).

• Terms like (x : X )m1 , (y : Y )m2 `p (s : A)n for each
p : m1 ×m2 → n.

• Appropriate cut rules and type operations p∗, p∗

• Structural rules for 2-cells u : p⇒ q : (m1, . . . ,mn)→ n

Γ `q a : A

Γ `p u∗s : A

Semantics

Locally discrete 2-bifibrations H →M.
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An unexpected bonus

In a cartesian monoidal 2-category, we can also talk about:

• Objects with non-cartesian monoidal structure ⊗ : m×m→ m

• Objects with multiple monoidal structures (e.g. ⊗,×)
• Adjunctions between cartesian and non-cartesian objects

• etc.

We therefore immediately get as special cases of our type theory:

• Intuitionistic linear logic

• Bunched implication

• A decomposition like � = p∗p∗ for the linear-logic modality !

• etc.

Furthermore:

• Product types and function types

A× B A→ B A⊗ B A( B

are unified with p∗, p∗ as (op)fibrational actions in H →M.
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One last enhancement

The cartesian monoidal 2-categoryM can also be presented by a
type-theoretic syntax!

Example

x : e, y : e ` x × y : e

x : s, y : s ` x × y : s

x : s ` p(x) : e

x : s, y : s ` p(x × y) = p(x)× p(y)

x : s ` x ⇒ x × x

...

This is the type 2-theory of a cartesian adjunction, written in simple
type 3-theory. What do I mean by that?
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Functorial semantics

Type theory Category theory

A doctrine specifies a
“kind of type theory”: the
type forming operations

and their rules

A doctrine is a 2-category
of structured categories,

such as “cartesian
monoidal categories”

A theory is a collection of
generating types, terms,

and axioms

A theory is the structured
category LT freely

generated by a model

A model of a theory
sends its types/terms to

objects/morphisms

A model of a theory T in
C is a morphism LT → C
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What is “a type theory”?

Remark

Unfortunately, the phrase “type theory” gets applied to both
theories and doctrines.

• When we state the ILH as “the category of dependent type
theories is equivalent to the category of lcccs”, each such
“dependent type theory” is a theory.

• But “Martin-Löf dependent type theory” is a doctrine (namely,
the doctrine in which the above theories are written).

This is a source of some confusion.
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Reifying the doctrines

Standard approach to type theory

1 Given a categorical structure, find a syntactic doctrine.

2 OR: given a syntactic doctrine, find a categorical structure.

3 Prove metatheorems like initiality, canonicity, . . .

Problems with this

• Without a general framework, can be hard to “find”
correspondents.

• Have to prove all the metatheorems over and over again for
each doctrine.

Our approach

Treat doctrines as “categorified theories” in a “categorified
doctrine”, about which we can prove the theorems once and for all.
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Functorial semantics, bis

Type theory Category theory

A doctrine specifies a
“kind of type theory”: the
type forming operations

and their rules

A doctrine is a 2-category
of structured categories,

such as “cartesian
monoidal categories”

A theory in a doctrine is
a collection of generating
types, terms, and axioms

A theory in a doctrine K
is the LT ∈ K freely
generated by a model

A model of a theory
sends its types/terms to

objects/morphisms

A model of a theory T in
C is a morphism LT → C

We can generate a semantic 2-theory using a syntactic type 2-theory
(or mode theory) expressed in a particular 3-theory.
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The hierarchy of 3-theories

Now we can describe the process of “building up to the full
complexity of dependent type theory” as a progression through
richer 3-theories:

1 LS’16: unary type theory, semantics in 2-categories.

x : A ` s : B

2 LSR’17: simple type theory, semantics in cartesian 2-categories.

x : A, y : B, z : C ` s : D

3 Now: dependent type theory, semantics in comprehension
2-categories.

x : A, y : B(x), z : C (x , y) ` s : D(x , y , z)
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Outline

1 Motivation: internal languages

2 Unary type 2-theories

3 Simple type 2-theories

4 Dependent type 2-theories
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What about dependent type theory?

Dependent type theory is a lot more complicated because. . .

1 In Γ `p t : Z , the type Z must also depend on Γ in some way
that is recorded, Γ `q Z typee.

2 Each type in Γ also depends on the previous ones in some way
that must be also be recorded.

3 These dependencies have to be related in some coherent way.

Example

If (x : A)s `p B typee, then (x : A)s, (y : B)e ` C typet must
depend on x through some r : s→ t and on y through some
q : e→ t. Do we need qp = r? (In fact, r⇒ qp is enough.)
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More about dependent type theory

Dependent type theory is a lot more complicated because. . .

4 We need “dependency graphs” that are more complicated than
linear. In ordinary DTT, if B and C both depend on A we can
write x : A, y : B(x), z : C (x) in order, where the dependence
of C on y is trivial. But in modal type theory such a “trivial
dependency” may not even be syntactically well-formed.

Example

If (x : A)s `p B typee for p : s→ e, and (x : A)s `q C typet for
q : s→ t, we want to allow a context like (x : A)s, (y : B)e, (z : C )t.
But there may be no morphism e→ t at all, hence no way for C to
depend on y even “trivially”.

The context has to be structured like a
directed acyclic graph or inverse category:

Be
As

Ct

p

q
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A disclaimer

This is a snapshot of work in progress.
Tomorrow it might look very different.

(And then the day after that different yet again.)
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A semantic approach

One of the usual semantic correspondents of ordinary DTT is:

Definition

A comprehension category is a commuting triangle of functors

T C→

C

χ

π cod
where. . .

1 C has a terminal object.

2 C→ is the arrow category, with cod the codomain projection.

3 π : T → C is a fibration.

4 χ preserves cartesian arrows.

Objects of C are “contexts”, objects of T are “types in context”.
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Comprehension 2-categories

By analogy with our use of 2-categories in the unary case, and
cartesian monoidal 2-categories in the simple case, we define:

Definition

A comprehension 2-category is a commuting triangle of 2-functors

D M→

M

χ

π cod
where. . .

1 M has a terminal object.

2 M→ is the arrow 2-category, cod the codomain projection.

3 π : D →M is a 2-fibration.

4 χ preserves cartesian 1-cells and 2-cells.
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The pieces of a comprehension 2-category

D M→

M

χ

π cod

objects ofM possible “shapes” of contexts
(mode contexts) (record modes and dependency structure)

morphisms ofM shapes of context morphisms
(mode substitutions)

objects of D modes/shapes of dependent types
(mode types) (record mode and dependency structure)

sections of χ(m) shapes of terms
(mode terms)

41 / 53



The basic comprehension 2-category

• If a 1-category C has pullbacks, then cod : C→ → C is a
fibration, corresponding to the pseudofunctor c 7→ C/c .

• Even if a 2-categoryM has pullbacks, cod :M→ →M is not
a 2-fibration! (m 7→ M/m is not functorial on 2-cells.)

• What is functorial is m 7→ F ib(M)/m, the internal fibrations
over m.

Example (The basic (semantic) comprehension 2-category)

F ib(M) M→

M
π cod

More generally, in any comprehension 2-category, χ : D →M→

lands inside F ib(M).
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Internal comprehension categories

• For simple type theory,M is generated by (e.g.) a cartesian
monoidal object.

• For dependent type theory, we should instead use “objects with
finite limits”.

• But the type-theoretic way to talk about categories with finite
limits is using dependent type theory with Σ, Id, which
semantically means a comprehension category.

Definition

A comprehension object in a comprehension 2-category D →M is:

• An object C ∈M with an internal terminal object �.
• An object T in the fiber Dc (a “formal fibration” over C).

• A morphism C.T→ C→ of internal fibrations over C inM
(here C→ is the copower by the arrow category inM).
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Building context shapes

• From a comprehension category we can define categories of
Reedy fibrant diagrams on inverse categories.

• We can internalize this for a comprehension object in a
comprehension 2-category.

• Thus: the “context shapes” are inverse categories.

One further improvement:

• Reedy fibrant diagrams are tedious to describe in
comprehension-category language.

• But we already have a better notation for comprehension
categories: dependent type theory itself!

• Use a mini-DTT to describe the modes and mode contexts.
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• From a comprehension category we can define categories of
Reedy fibrant diagrams on inverse categories.

• We can internalize this for a comprehension object in a
comprehension 2-category.

• Thus: the “context shapes” are inverse categories.

One further improvement:

• Reedy fibrant diagrams are tedious to describe in
comprehension-category language.

• But we already have a better notation for comprehension
categories: dependent type theory itself!

• Use a mini-DTT to describe the modes and mode contexts.5

5cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures
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Dependent type 2-theory

If we have one comprehension object T→ C→, a generic mode
context (object ofM) looks something like this:(

X : T()
)
,
(
Y : T(x : X )

)
,
(
Z : T(x : X , y : Y (x))

)
This is a bit hard to parse, so here’s some help:

• (), (x : X ), and (x : X , y : Y (x)) are elements of C,
represented by “mini-contexts”.

• () : C is in the empty mode context.
• (x : X ) : C is in the mode context (X : T()).
• (x : X , y : Y (x)) in mode context

(
X : T()

)
,
(
Y : T(x : X )

)
.

• T(), T(x : X ), and T(x : X , y : Y (x)) are mode types
(objects of D) obtained as pullbacks of T to these elements.

• The whole thing is obtained by repeatedly extending by a
variable (X ,Y ,Z ) belonging to a mode type that’s well-defined
in the context of the previous variables.
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Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category(
X : T()

)
,
(
Y : T(x : X )

)
X ← Y(

X : T()
)
,
(
Y : T(x : X )

)
,
(
Z : T(x : X , y : Y (x))

)
X ← Y ← Z(

X : T()
)
,
(
Y : T(x : X , x ′ : X )

)
X ⇔ Y

(
X : T()

)
,
(
Y : T()

)
,
(
Z : T(x : X , y : Y )

) X

Y
Z

(
X : T()

)
,
(
Y : T(x : X )

)
,
(
Z : T(x : X )

) X
Y

Z

(
X : T()

)
,
(
Y : T(x : X )

)
,
(
Z : T(x : X )

)
,(

W : T(x : X , y : Y (x), z : Z (x))
) X

Y

Z
W
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Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]
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Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]
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Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]
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Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]
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[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]
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Dependent type theory over dependent type 2-theory

Semantically, we have a fibration of comprehension 2-categories over
D →M→. Syntactically, we have judgments-over-judgments:

(a : A), (b : B(a)) ` C (a, b) type
(X :T()), (Y :T(x :X )) ` T(x :X ,y :Y (x)) mode

(a : A), (b : B) ` C (a, b) type
(X :T()), (Y :T()) ` T(x :X ,y :Y ) mode

(a : A), (b : B(a)) ` C (a)
(X :T()), (Y :T(x :X )) ` T(x :X ) mode
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Dependent type 2-theory for an adjunction

Now suppose we have two comprehension objects Ts → C→
s and

Te → C→
e , with a “comprehension morphism” consisting of terms(

Γ : Cs

)
` pΓ : Ce(

Γ : Cs

)
,
(
X : Ts(Γ)

)
` pX : Te(pΓ)

which “commute with comprehension”. We have a “purely s”
2-DTT and a “purely e” 2-DTT, plus e.g.

Mode context “Inverse category”(
X : Ts()

)
,
(
Y : Te(x : pX )

)
p∗(X )← Y(

X : Ts()
)
,
(
Y : Te(x : pX )

)
,(

Z : Te(x : pX , y : Y (x))
) p∗(X )← Y ← Z(

X : Ts()
)
,
(
Y : Ts(x : X )

)
,(

Z : Te(x : pX , y : pY (x))
) p∗(X )← p∗(Y )← Z

(
X : Ts()

)
,
(
Y : Te(x : pX )

)
,
(
Z : Ts(x : X )

) p∗(X )
p∗(Y )

Z
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Now suppose we have two comprehension objects Ts → C→
s and

Te → C→
e , with a “comprehension morphism” consisting of terms(

Γ : Cs

)
` pΓ : Ce(

Γ : Cs

)
,
(
X : Ts(Γ)

)
` pX : Te(pΓ)

which “commute with comprehension”. We have a “purely s”
2-DTT and a “purely e” 2-DTT, plus e.g.

Mode context “Inverse category”(
X : Ts()

)
,
(
Y : Te(x : pX )

)
p∗(X )← Y(

X : Ts()
)
,
(
Y : Te(x : pX )

)
,(

Z : Te(x : pX , y : Y (x))
) p∗(X )← Y ← Z(

X : Ts()
)
,
(
Y : Ts(x : X )

)
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Z : Te(x : pX , y : pY (x))
) p∗(X )← p∗(Y )← Z

(
X : Ts()

)
,
(
Y : Te(x : pX )

)
,
(
Z : Ts(x : X )

) p∗(X )
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Z
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Dependent type theory for an adjunction

(x : X )s, (a : A(x))e ` B(x , a) typee
(X :Ts()), (Y :Te(x :p(X ))) ` Te(x :p(X ),y :Y (x)) mode

(x : X )s, (y : Y (x))s ` A(x , y) typee
(X :Ts()), (Y :Ts(x :X )) ` Te(x :p(X ),y :p(Y )(x)) mode

(x : X )s, (a : A(x))e ` B(x) types
(X :Ts()), (Y :Te(x :p(X ))) ` Ts(x :X ) mode
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The 2-dimensional aspect of 2-DTT

M and D are 2-categories, so we have 2-cell judgments. These
include variable-for-variable substitutions on mini-contexts:(

X : T()
)
| (x : X ) � (x , x) : (x1 : X , x2 : X ) : C

(X : T()) C

(x :X )

(x1:X ,x2:X )

⇓(x ,x)

as well as generating 2-cells between generating mode morphisms:(
X : Tm()

)
| (x : pX ) � u(x) : qX : Tn()

(X : Tm()) Tn()

pX

qX

⇓u
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Modal dependency

Suppose comprehension objects labeled m, n, e with morphisms

p : m→ n q : n→ e r : m→ e

and a 2-cell u : r⇒ qp. Then we have a mode context(
X : Tm()

)
,
(
Y : Tn(x : pX )

)
,
(
Z : Te(x : rX , y : qY (u(x)))

)
Note how the type of Z typechecks: x : rX , so u(x) : qp(X ) which
is what qY depends on.
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Modal dependency, semantically

(a : A)m, (b : B(a))n ` C (a, b) typee
(X :Tm()), (Y :Tn(x :pX )) ` (Z :Te(x :rX ,y :qY (u(x)))) mode

Ce

• qBn Bn

rAm qpAm qAm

y
q(·)

u

In general, what we get semantically is the oplax limit of an oplax
diagram of comprehension categories.
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Conclusion

1 All kinds of “type doctrines”, including geometric morphisms,
modalities, non-cartesian monoidal structures, and all kinds of
dependency, can be expressed syntactically as “dependent type
2-theories”.

2 Each such 2-theory generates a class of 1-theories that
specialize to “dependent modal type theories” for describing
structures on, and diagrams of, (∞, 1)-toposes.

3 We can hope to prove metatheorems like canonicity and
initiality once and for all, and then simply specialize them to
every new 2-theory.
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