Type 2-theories

Michael Shulman

Jjoint work with Dan Licata and Mitchell Riley

University of San Diego

April 12, 2018
HoTTEST

/53

@ Motivation: internal languages

N

53

The internal language hypothesis

The Internal Language Hypothesis J

Homotopy type theory is an internal language for (oo, 1)-toposes.

The internal language hypothesis

The Internal Language Hypothesis J

Homotopy type theory is an internal language for (oo, 1)-toposes.

| propose this as analogous to the Homotopy Hypothesis,
Stabilization Hypothesis, Cobordism Hypothesis, etc. from higher
category theory.

“One can regard the above hypothesis, and those to follow,
either as a conjecture pending a general definition. .. or as a
feature one might desire of such a definition.”

— John Baez and Jim Dolan,

Higher-Dimensional Algebra and
Topological Quantum Field Theory

Applications of the internal language hypothesis

The Internal Language Hypothesis J

Homotopy type theory is an internal language for (oo, 1)-toposes.

Some theorems that are proven:

e (00, 1)-toposes are presented by CwAs w/ HITs!

e Some oo-object classifiers are presented by CwA universes?

e Lex (00, 1)-categories are equivalent to CwAs w/ ¥, 1d3
Theorems we still need to prove:

e The syntax of type theory is the initial CwA w/ ...

o All co-object classifiers are presented by CwA universes
Definitions we still need to make:

e What is a general notion of “higher inductive type"?

e What is an “elementary (oo, 1)-topos”?

Cisinski, Gepner—Kock, Lumsdaine-S.
2\/oevodsky, S.
3Kapulkin—Lumsdaine, Kapulkin-Szumito

Applications of the internal language hypothesis

The Internal Language Hypothesis
Homotopy type theory is the internal language of (oo, 1)-toposes. ’

Definitions we should not make:
e Homotopy type theory consists of what's true in simplicial sets.

e Homotopy type theory consists of what's true in cubical sets.

If you will forgive me saying it again
e One model is not enough!
e Please don't talk about “the intended model”!

Why?

One reason: applications of homotopy type theory to new results in
classical homotopy theory are much closer to our reach if we go
through other models (e.g. Blakers—Massey in Goodwillie calculus).

What is an (oo, 1)-topos?

To a homotopy type theorist, the Internal Language Hypothesis can
be a “working definition” of an (oo, 1)-topos: a collection of objects
and morphisms that can interpret the types and terms of HoTT.

Examples

e coGpd: types are co-groupoids (“spaces”)
(The oo-version of the 1-topos Set)

e 0c0Gpd©’’: types are presheaves of co-groupoids on C

e Sh(X): types are sheaves of co-groupoids on X

But the situation for functors between (oo, 1)-toposes is subtler.

6/53

(00, 1)-geometric morphisms

Definition

A logical functor L : & — S preserves all relevant structure.

Definition
A geometric morphism p: £ — S is an adjoint pair p* : F 2 & : p,
such that p* preserves finite limits.

Examples

e f: C— D a functor, f*: oondDOp = oogpdCOp : Rany
is a geometric morphism coGpd©” — coGpdP".
o If f: X — Y is a continuous map, there is a geometric
morphism Sh(f) : Sh(X) — Sh(Y).
e Any £ has a unique geometric morphism p : £ — ocoGpd-:
e p.(A) =E&(1,A) is the global sections
e p*(X)=1Ix1is a discrete or constant object on X.

53

~

Internal languages for geometric morphisms?

Fact

A lot of interesting theorems in (0o, 1)-topos theory are not about
just one topos, but about diagrams of toposes and geometric
morphisms between them.

Example
A (o0, 1)-topos € is. ..
e oo-connected if p* : coGpd — £ is fully faithful

locally oo-connected if p* has a left adjoint

e oo-compact if p, preserves filtered colimits

Problem

Is there a version of homotopy type theory that can be an internal
language for ?

Applications of a theory in progress

We claim that yes, there is such a type theory, where the functors
p*, p« appear as higher modalities. The fully general and
dependently typed version is still a work in progress, but already it
has been specialized to various applications:

e Internal universes in topos models (L.-Orton-Pitts-Spitters '18)
e One modality b
e Spatial and real-cohesive type theory (S. '17)
e Three modalities [4 b I #
e Differential cohesion (L.-S.-Gross-New-Paykin-R.-Wellen — work
in progress)
e Six modalities [b <4 # and R 43 - &.
e Type theory for parametrized pointed spaces and spectra
(Finster-L.-Morehouse-R. — work in progress)
e One self-adjoint modality § - 4
e Non-cartesian “smash product” monoidal structure
e Directed type theory with cores and opposites (work in
progress)

® Unary type 2-theories

10/53

First steps in modal type theory

Suppose we have one geometric morphism p: & — S.
We might imagine a type theory with:

e An “E-type theory" Fes: A

e A separate “S-type theory” Atgst: B

e An operation p* making any S-type into an E-type
e An operation p, making any E-type into an S-type

11/53

First steps in modal type theory

Suppose we have one geometric morphism p: & — S.
We might imagine a type theory with:

o An “E-type theory" g s: A
e A separate “S-type theory” Atgst: B

An operation p* making any S-type into an E-type

An operation p, making any £-type into an S-type

Functoriality rules for p* and p,

Adjunction rules for p* - p,

11/53

First steps in modal type theory

Suppose we have one geometric morphism p: & — S.
We might imagine a type theory with:

e An “E-type theory" Fes: A

e A separate “S-type theory” Atgst: B

e An operation p* making any S-type into an E-type

e An operation p, making any E-type into an S-type

e Functoriality rules for p* and p,

e Adjunction rules for p* = p,

e Higher functoriality rules for p* and p. on homotopies
e Higher adjunction rules for homotopies

e Coherence laws

e More coherence laws. ..

11/53

Design principles for type theory and category theory

Type theory Category theory
Types should be defined Objects should be defined
by introduction, by universal properties.
elimination, 8 and 7
rules.
Good type theories Structures defined by
satisfy canonicity and universal properties are
normalization. automatically fully
g coherent.

12/53

Example: Cartesian products

Type theory Category theory

p:AxB

A—~AxB—=B
mi(p): A m(p) : B

A
a:A b:B
(a,b): Ax B X - » Ax B
\ B
71'1(3, b) =43 .
m(a,b) = b correct composites

p = (m1(p). m2(p)) uniqueness

13 /53

Example: Cartesian products

Type theory Category theory

p:AxB

A—~AxB—B
mi(p) - A m(p) : B

A
a:A b:B
(a,b): Ax B X - » Ax B
\ B
71'1(3, b) =43 .
m(a,b) = b correct composites

p = (m1(p). m2(p)) uniqueness

13 /53

Example: Cartesian products

Type theory Category theory

p:AxB

A—~AxB—=B
mi(p): A m(p) : B

A
a:A b:B
(a,b): Ax B X oo » AxB
\ B
71'1(3, b) =43 .
m(a, b) = b correct composites

p = (m1(p). m2(p)) uniqueness

13 /53

Example: Cartesian products

Type theory Category theory

p:AxB

A—~AxB—=B
mi(p): A m(p) : B

A
a:A b:B
(a,b): Ax B X -—--- »y Ax B
\ B
7Tl(a./ b) = a .
m(a,b) = b correct composites

p = (m1(p). m2(p)) uniqueness

13 /53

Example: Cartesian products

Type theory Category theory

p:AxB

A—~AxB—=B
mi(p): A m(p) : B

A
a:A b:B
(a,b): Ax B X - » Ax B
\ B
71'1(3, b) =43 .
m(a,b) = b correct composites

p = (mi(p). m2(p)) uniqueness

13 /53

Universal properties for adjunctions

Definition
A profunctor £ + S is a category H equipped with a functor
H — 2 =(0— 1), with fibers Ho =S and H; = €.

e Hom-sets H (X, A) of “heteromorphisms” for X € S, A€ £
e With actions by arrows in £ and S

Definition
o A left representation of H at X € S is p*X € £ with an
isomorphism E(p* X, A) = H(X, A).
e A right representation of H at A€ £ is p,A € S with an
isomorphism S(X, p.A) = H(X, A).

Insofar as they exist, we automatically have p* - p, since
E(p X, A) = H(X, A) = S(X, p.A).

14 /53

A hierarchy of type theories

Dependent type theory is very complicated, so we build up in stages.

@ Unary type theory: no dependency, only one type in context.
Semantics in categories.

x:AFs: B

® Simple type theory: no dependency, multiple types in context.
Semantics in categories with products, or multicategories.

x:Ay:B,z:Cks:D

© Dependent type theory: types can depend on previous ones.
Semantics in lex categories (comprehension categories etc.)

x:Ay:B(x),z: C(x,y)Fs:D(x,y,z)

15/53

Unary type theory for a profunctor

X typeg A typeg

x: Xkst:Y x: XkFys: A a:Algs: B

16 /53

Unary type theory for a profunctor

X typeg A typeg
x: Xkst:Y x: XkFys: A a:Algs: B

x: Xkgt:Y y:Yrss: Z
x: Xkss[t/y]l: Z

a:Abet: B b:Blgs: C
a:Abgs[t/b]: C

x:XFst:Y vy:YbFys: A
x: XFyst/y] A

x: XbFyt:A a:Algt: B
x: Xty s[t/a]: B

16 /53

Unary type theory for a profunctor

X typeg A typeg
x: Xkst:Y x: XkFys: A a:Algs: B

x: Xkst:Y y:Yrss: Z
x: Xkss[t/y]l: Z

a:Abet: B b:Blgs: C
a:Abgs[t/b]: C

x:XFst:Y vy:YbFys: A
x: XFyst/y] A

x: XbFyt:A a:Algt: B
x: Xty s[t/a]: B

16 /53

Unary type theory for a profunctor

X typeg A typeg
x: Xkst:Y x: XkFys: A a:Algs: B

x: Xkgt:Y y:Yrss: Z
x: Xkss[t/y]l: Z

a:Abest: B b:Blgs: C
a:Abges[t/b]: C

x:XFst:Y vy:YbFys: A
x: XFyst/y] A

x: XbFyt:A a:Algt: B
x: Xty s[t/a]: B

16 /53

Unary type theory for a profunctor

X typeg A typeg
x: Xkst:Y x: XkFys: A a:Algs: B

x: Xkgt:Y y:Yrss: Z
x: Xkss[t/y]l: Z

a:Abet: B b:Blgs: C
a:Abgs[t/b]: C

x:XFst:Y v:YbFys: A
x: X Fys[t/y] A

x: XbFyt:A a:Algt: B
x: Xty s[t/a]: B

16 /53

Unary type theory for a profunctor

X typeg A typeg
x: Xkst:Y x: XkFys: A a:Algs: B

x: Xkgt:Y y:Yrss: Z
x: Xkss[t/y]l: Z

a:Abet: B b:Blgs: C
a:Abgs[t/b]: C

x:XFst:Y vy:YbFys: A
x: XFyst/y] A

x: XbFyt:A a:Alect: B
x: Xty s[t/a] B

16 /53

Unary type theory for an adjunction

A typeg X typeg
——— p,-FORM —————— p*-FORM
p«A typeg p*X typeg
(x: X) by (s A) (x: X) Fs (s: piA)
ps-INTRO p«-ELIM
(x : X) Fs (s*: p,A) (x: X))y (s4: A)

(y:Y)Es(t: X)
(v:Y) b (£ pX)
(b:B)Fg (s: p*X) (x: X)Fx (c: C)
(b:B)te ((let X’ =sinc): C)

p*-INTRO

p*-ELIM

sty=s sf=s (let X’ == t"inc) =c

(let x* == tin c[x"/y]) = c[t/y]

17 /53

Unary type theory for an adjunction

A typeg X typeg
————— p.-FORM ————— p*-FORM
p«A typeg p*X typeg
(x: X) by (s A) (x: X) ks (s: pA)
p+-INTRO Ps-ELIM
(x: X) Fs (5% : p.A) (x: X) Fy (541 A)

(y:Y)Es(t: X)
(v:Y) b (£ pX)
(b:B)Fg (s: p*X) (x: X)Fx (c: C)
(b:B)te ((let X’ =sinc): C)

p*-INTRO

p*-ELIM

sty=s sf=s (let X’ == t"inc) =c

(let x* == tin c[x"/y]) = c[t/y]

17 /53

Some examples

Example

S4 modal logic has a modality [, with [JP sometimes interpreted as
“P is necessarily true”, satisfying laws:

OPAQ)=0PADOQ or=T opP— P opP —0O4P

In other words, [is a product-preserving comonad.
Pfenning—Davies gave a type theory for [, and Reed decomposed it
as p*p, for an adjunction p* = p,, inspiring our framework.

Example
In a cohesive topos p: £ — S:
e the objects of £ are “spaces” or “manifolds”

e p*X gives X the “discrete topology”

e p. X is the underlying set of points of X

18 /53

Unary type theory for diagrams

M a category (the opposite “shape” of a diagram of toposes).
Unary modal type theory

e A unary type theory x : X -1, t: Y for each m € M.

e Hetero-judgments (x : X)m Fp (s : A)q for each p: m — n.

e Appropriate cut rules, and type operations as desired:

X typey A type,
p*X type, p«X type,

Semantics

It has semantics in categories H — M over M, where
e If all p* exist, the functor H — M is an opfibration.
e If all p, exist, the functor H — M is a fibration.

If p*/p. all exist, H — M is a bifibration, hence equivalent to a
functor M — Cat aq;.

1-categories aren't enough

Actually want functors M°P — Cat,,q; where M is a 2-category.

Examples
e If M contains an adjunction, get an adjoint triple.

e If M contains a monad, get an adjoint monad/comonad pair.

These arise naturally on local/cohesive/tangent toposes.

Definition (Hermida,Buckley)
A 2-functor m: H — M is:

e A local fibration if each functor on hom-categories
H(X,A) = M(nX,mA) is a fibration (+ axioms).
e A 2-fibration if it is a local fibration and has p,'s.

e A 2-opfibration if it is a local fibration and has p*'s.

Theorem (Bakovi¢,Buckley)
(Locally discrete 2-bifib. H — M) ~ (functors M°P — Caty,g;).

20 /53

Unary type theory for diagrams

M a 2-category (the opposite “shape” of a diagram of toposes).

Unary modal type theory (Licata-S. '16)
e A unary type theory x : X -1, t: Y for each m € M.
e Hetero-judgments (x : X)m Fp (s : A)q for each p: m — n.
e Appropriate cut rules and type operations p*, p,

e Structural rules for 2-cellsu:p=g: m—>n

(x: X)mbq(s: A
(x: X)m Fp (u's: Ay

Semantics

Locally discrete 2-bifibrations H — M, hence functors
MOP — Catyygj.

The objects of M are sometimes called modes (cf. modal logic).

21/53

® Simple type 2-theories

Simple type theory for an adjunction

In unary type theory, we can think of (x : X) k3 (s: A) as
representing a morphism p*X — A.

Idea for simple type theory

Allow a term in an &-type to depend on multiple variables, some in
S-types and others in E-types.

o (x: X)s,(y:Y)s,(a: A)g,(b: B)et (t: C)g represents a
morphism p*X x p*Y x Ax B — C.

This turns out to require/imply that p* preserves products.
(x: X)sk (t: C)gistheold (x: X) by (t:C).
(a:A)ek(t: C)gistheold (a: A)tg (t: C).

Still have (x: X)st (s:Y)s, theold (x : X) Fs (s:Y).
Terms in S-types are not allowed to depend on variables in
E-types. “Only left adjoints can appear in contexts.”

23 /53

Simple type theory for an adjunction, rules

Fst(s: A Fs b (t:pA)s
i P«-INTRO Pu-ELIM
s (S : p*A)g s, Ac (tﬁ : A)g
st (t : X)g
p*-INTRO

Fs,A¢ b (£ p*X)e

rS,Agl—(t:p*X)g rS,Ag,(X:X)Sl—(C: C)g
Fs,Ag b ((let X :==tinc): C)e

p*-ELIM

24 /53

Towards profunctors for simple type theory

On the categorical side, we should replace:
e categories ~» cartesian monoidal categories
e 2-categories ~» cartesian monoidal 2-categories

e objects in a 2-category ~~ cartesian monoidal objects
Definition

A cartesian monoidal object m € M is one with right adjoints to
A:m—-mxmand!:m— 1.

25 /53

Cartesian monoidal profunctors

Let M be the cartesian monoidal 2-category freely generated by two
cartesian monoidal objects ¢, s and a cartesian morphism p : s — .

e Objects like s x s X exeXxe

e Morphisms like s Xx s — s and ¢ X ¢ X ¢ — ¢ and
sXEgXexXexXxe—rexexexexe—e

Definition
A cartesian monoidal profunctor & -+ S is a cartesian monoidal
local fibration H — M with fibers H, = € and H; = S.

e Think of the fiber Hsxsxexexe a8 S X S X E X E X E
(“Contexts of a specified length and shape”)*

e Heteromorphisms like (Xs, Ys, Ae, Be, C¢) — D..
e Local fibration condition gives [(A, A) — B] ~» [A — B]

This isn't quite true, but the problem goes away if we use cartesian 2-multicategories.
26 /53

Simple modal type theory

Let M be a cartesian monoidal 2-category.

Simple modal type theory (Licata-S.-Riley '17)
e A class of types for each m € M (the modes).

e Terms like (X : X)my, (¥ : Y)m, Fp (s A)n for each
prmg X mp —n.

e Appropriate cut rules and type operations p*, p,

e Structural rules for 2-cells u: p = q: (mg,...,m,;) > n
[ga:A
Mpu's: A
Semantics

Locally discrete 2-bifibrations H — M.

An unexpected bonus

In a cartesian monoidal 2-category, we can also talk about:
Objects with non-cartesian monoidal structure ® : m x m — m

Objects with multiple monoidal structures (e.g. ®, x)

Adjunctions between cartesian and non-cartesian objects
e etc.
We therefore immediately get as special cases of our type theory:

e Intuitionistic linear logic

Bunched implication
A decomposition like 1 = p*p, for the linear-logic modality !

e ectc.

28 /53

An unexpected bonus

In a cartesian monoidal 2-category, we can also talk about:
Objects with non-cartesian monoidal structure ® : m x m — m

Objects with multiple monoidal structures (e.g. ®, x)

Adjunctions between cartesian and non-cartesian objects
e etc.
We therefore immediately get as special cases of our type theory:

e Intuitionistic linear logic

Bunched implication
e A decomposition like [0 = p*p, for the linear-logic modality !
e etc.

Furthermore:
e Product types and function types

Ax B A—B A® B A—B

are unified with p*, p, as (op)fibrational actions in H — M.

28 /53

One last enhancement

The cartesian monoidal 2-category M can also be presented by a
type-theoretic syntax!

Example

XieyieExxy:e

X 5y :sExXy:s
x:skFp(x):e

x:8,y:5Ep(x xy)=p(x)xp(y)
X:skFx=xXx

This is the type 2-theory of a cartesian adjunction, written in simple
type 3-theory. What do | mean by that?

29 /53

Type theory

Category theory

Functorial semantics

A theory is a collection of
generating types, terms,
and axioms

A theory is the structured
category Lt freely
generated by a model

A model of a theory
sends its types/terms to
objects/morphisms

A model of a theory T in
C is a morphism L+ — C

30/53

Type theory

Category theory

Functorial semantics

A doctrine specifies a
“kind of type theory": the
type forming operations
and their rules

A doctrine is a 2-category
of structured categories,
such as “cartesian
monoidal categories”

A theory in a doctrine is
a collection of generating
types, terms, and axioms

A theory in a doctrine K
is the L € IC freely
generated by a model

A model of a theory
sends its types/terms to
objects/morphisms

A model of a theory T in
C is a morphism L+ — C

30/53

What is “a type theory”?

Remark

Unfortunately, the phrase “type theory” gets applied to both
theories and doctrines.

e When we state the ILH as “the category of dependent type
theories is equivalent to the category of lcccs”, each such
“dependent type theory” is a theory.

e But "Martin-Lof dependent type theory” is a doctrine (namely,
the doctrine in which the above theories are written).

This is a source of some confusion.

31/53

Reifying the doctrines

Standard approach to type theory
@ Given a categorical structure, find a syntactic doctrine.
® OR: given a syntactic doctrine, find a categorical structure.

© Prove metatheorems like initiality, canonicity, . ..

Problems with this
e Without a general framework, can be hard to “find"
correspondents.

e Have to prove all the metatheorems over and over again for
each doctrine.

Our approach

Treat doctrines as “categorified theories” in a “categorified
doctrine”, about which we can prove the theorems once and for all.

32/53

Type theory

Category theory

Functorial semantics, bis

A doctrine specifies a
“kind of type theory”: the
type forming operations
and their rules

A doctrine is a 2-category
of structured categories,
such as “cartesian
monoidal categories”

A theory in a doctrine is
a collection of generating
types, terms, and axioms

A theory in a doctrine K
is the L+ € IC freely
generated by a model

A model of a theory
sends its types/terms to
objects/morphisms

A model of a theory T in
C is a morphism L+ — C

33/53

Type theory

Category theory

Functorial semantics, bis

A 2-theory specifies a
“kind of type theory”: the
type forming operations
and their rules

A 2-theory is a structured
2-category freely
generated by something

A 1-theory in a 2-theory is
a collection of generating
types, terms, and axioms

A 1-theory in a 2-theory
is a morphism Lk — Cat

A 0O-theory in a 1-theory
sends its types/terms to
objects/morphisms

A 0O-theory in a 1-theory
T in C is a morphism
L+ - C

33/53

Functorial semantics, bis

Type theory Category theory
A 3-theory is like A 3-theory is a 3-category
“unary type theory”, like “2-categories”,
“simple type theory", or “cartesian monoidal
“dependent type theory” 2-categories”, or ...
A 2-theory specifies a A 2-theory in a 3-theory
“kind of type theory”: the is an object of it freely
type forming operations generated by something
and their rules

33/53

Type theory

Category theory

Functorial semantics, bis

A 3-theory is like
“unary type theory”,
“simple type theory", or
“dependent type theory”

A 3-theory is a 3-category
like “2-categories”,
“cartesian monoidal
2-categories”, or ...

A 2-theory specifies a
“kind of type theory”: the
type forming operations
and their rules

A 2-theory in a 3-theory
is an object of it freely
generated by something

We can generate a semantic 2-theory using a syntactic type 2-theory

(or mode theory) expressed in a particular 3-theory.

33/53

The hierarchy of 3-theories

Now we can describe the process of “building up to the full
complexity of dependent type theory” as a progression through
richer 3-theories:

@ LS'16: unary type theory, semantics in 2-categories.
x:AFs:B
® LSR'17: simple type theory, semantics in cartesian 2-categories.
x:Ay:B,z:Cks:D

© Now: dependent type theory, semantics in comprehension
2-categories.

x:Ay:B(x),z: C(x,y)Fs:D(x,y, z)

34 /53

@ Dependent type 2-theories

35/53

What about dependent type theory?

Dependent type theory is a lot more complicated because. ..

® InTH,t:Z the type Z must also depend on I in some way
that is recorded, I ¢ Z type,.

® Each type in I also depends on the previous ones in some way
that must be also be recorded.

© These dependencies have to be related in some coherent way.

Example

If (x: A)s Fp B type,, then (x : A)s, (v : B) F C type, must
depend on x through some t: s — t and on y through some
q:e—t Do we need gp = t? (In fact, t = qp is enough.)

36 /53

More about dependent type theory

Dependent type theory is a lot more complicated because. . .

O We need “dependency graphs” that are more complicated than
linear. In ordinary DTT, if B and C both depend on A we can
write x : A,y : B(x),z : C(x) in order, where the dependence
of C on y is trivial. But in modal type theory such a “trivial
dependency” may not even be syntactically well-formed.

Example

If (x:A)s Fp B type, forp:s — e, and (x: A)s Fq C type, for
q:s — t, we want to allow a context like (x : A)s, (v : B)e, (z : C)x.
But there may be no morphism ¢ — t at all, hence no way for C to
depend on y even “trivially”.

P B
The context has to be structured like a A < e
q Ct

directed acyclic graph or inverse category:

37/53

A disclaimer

This is a snapshot of work in progress.
Tomorrow it might look very different.
(And then the day after that different yet again.)

38 /53

A semantic approach

One of the usual semantic correspondents of ordinary DTT is:
Definition

A comprehension category is a commuting triangle of functors

T—> Cc

\ / where. . .

@ C has a terminal object.

® C is the arrow category, with cod the codomain projection.
©® 7: T — Cis a fibration.

O Y preserves cartesian arrows.

Objects of C are “contexts”, objects of T are “types in context”.

39/53

Comprehension 2-categories

By analogy with our use of 2-categories in the unary case, and
cartesian monoidal 2-categories in the simple case, we define:

Definition
A comprehension 2-category is a commuting triangle of 2-functors

» M™

D X
\ / where. . .
o cod
M

@ M has a terminal object.
® M is the arrow 2-category, cod the codomain projection.
©® 7 : D — M is a 2-fibration.

O preserves cartesian 1-cells and 2-cells.

40 /53

The pieces of a comprehension 2-category

D X y M™
M

objects of M possible “shapes” of contexts
(mode contexts) (record modes and dependency structure)
morphisms of M shapes of context morphisms

(mode substitutions)

objects of D modes/shapes of dependent types
(mode types) (record mode and dependency structure)
sections of x(m) shapes of terms

(mode terms)

41 /53

The basic comprehension 2-category

e If a 1-category C has pullbacks, then cod: C7 — Cis a
fibration, corresponding to the pseudofunctor ¢ — C/c.

e Even if a 2-category M has pullbacks, cod : M™ — M is not
a 2-fibration! (m +— M /m is not functorial on 2-cells.)

42 /53

The basic comprehension 2-category

e If a 1-category C has pullbacks, then cod: C7 — Cis a
fibration, corresponding to the pseudofunctor ¢ — C/c.

e Even if a 2-category M has pullbacks, cod : M™ — M is not
a 2-fibration! (m — M /m is not functorial on 2-cells.)

e What is functorial is m — Fib(M)/m, the internal fibrations
over m.

Example (The basic (semantic) comprehension 2-category)
b(M

More generally, in any comprehension 2-category, x : D — M™
lands inside Fib(M).

Fi

42 /53

Internal comprehension categories

e For simple type theory, M is generated by (e.g.) a cartesian
monoidal object.

e For dependent type theory, we should instead use “objects with
finite limits”.

e But the type-theoretic way to talk about categories with finite
limits is using dependent type theory with ¥, Id, which
semantically means a comprehension category.

Definition

A comprehension object in a comprehension 2-category D — M is:
e An object € € M with an internal terminal object <.
e An object T in the fiber D, (a “formal fibration” over €).

e A morphism €. — € of internal fibrations over € in M
(here € is the copower by the arrow category in M).

43 /53

Building context shapes

e From a comprehension category we can define categories of
Reedy fibrant diagrams on inverse categories.

e We can internalize this for a comprehension object in a
comprehension 2-category.

e Thus: the “context shapes” are inverse categories.

44 /53

Building context shapes

e From a comprehension category we can define categories of
Reedy fibrant diagrams on inverse categories.

e We can internalize this for a comprehension object in a
comprehension 2-category.

e Thus: the “context shapes” are inverse categories.

One further improvement:

e Reedy fibrant diagrams are tedious to describe in
comprehension-category language.

e But we already have a better notation for comprehension

categories: dependent type theory itself!

e Use a mini-DTT to describe the modes and mode contexts.®

Scf. Tsementzis—Weaver, Finite Inverse Categories as Signatures
44 /53

Dependent type 2-theory

If we have one comprehension object ¥ — €, a generic mode
context (object of M) looks something like this:

(X:Z0), (Y :Z(x: X)), (Z:F(x: X,y : Y(x)))

This is a bit hard to parse, so here's some help:
e (), (x:X),and (x: X,y : Y(x)) are elements of €,
represented by “mini-contexts”.
e (): Cisin the empty mode context.
e (x:X):€isin the mode context (X : Z()).
e (x:X,y:Y(x))in mode context (X : T()), (Y : T(x : X)).
e (), T(x: X), and T(x : X,y : Y(x)) are mode types
(objects of D) obtained as pullbacks of ¥ to these elements.
e The whole thing is obtained by repeatedly extending by a
variable (X, Y, Z) belonging to a mode type that's well-defined
in the context of the previous variables.

45 /53

Dependent type 2-theory

If we have one comprehension object ¥ — €, a generic mode
context (object of M) looks something like this:

(X:Z0), (Y :Z(x: X)), (Z:F(x: X,y :Y(x))

This is a bit hard to parse, so here's some help:
e (), (x:X),and (x: X,y : Y(x)) are elements of €,
represented by “mini-contexts”.
e (): Cisin the empty mode context.
e (x:X):€isin the mode context (X : Z()).
e (x:X,y:Y(x))in mode context (X : T()), (Y : T(x : X)).
e (), T(x: X), and T(x : X,y : Y(x)) are mode types
(objects of D) obtained as pullbacks of ¥ to these elements.
e The whole thing is obtained by repeatedly extending by a
variable (X, Y, Z) belonging to a mode type that's well-defined
in the context of the previous variables.

45 /53

Dependent type 2-theory

If we have one comprehension object ¥ — €, a generic mode
context (object of M) looks something like this:

(X:Z0), (Y :T(x: X)), (Z:F(x: X,y Y(x))

This is a bit hard to parse, so here's some help:
e (), (x:X),and (x: X,y : Y(x)) are elements of €,
represented by “mini-contexts”.
e (): Cisin the empty mode context.
e (x:X):€isin the mode context (X : Z()).
e (x:X,y:Y(x))in mode context (X : T()), (Y : T(x : X)).
e (), T(x: X), and T(x : X,y : Y(x)) are mode types
(objects of D) obtained as pullbacks of ¥ to these elements.
e The whole thing is obtained by repeatedly extending by a
variable (X, Y, Z) belonging to a mode type that's well-defined
in the context of the previous variables.

45 /53

Dependent type 2-theory

If we have one comprehension object ¥ — €, a generic mode
context (object of M) looks something like this:

(X ; T()),(Y:T(X:X)),(Z:‘I(X:X,y: Y(X)))

This is a bit hard to parse, so here's some help:
e (), (x:X),and (x: X,y : Y(x)) are elements of €,
represented by “mini-contexts”.
e (): Cisin the empty mode context.
e (x:X):€isin the mode context (X : Z()).
e (x:X,y:Y(x))in mode context (X : T()), (Y : T(x : X)).
e (), T(x: X), and T(x : X,y : Y(x)) are mode types
(objects of D) obtained as pullbacks of ¥ to these elements.
e The whole thing is obtained by repeatedly extending by a
variable (X, Y, Z) belonging to a mode type that's well-defined
in the context of the previous variables.

45 /53

Dependent type 2-theory

If we have one comprehension object ¥ — €, a generic mode
context (object of M) looks something like this:

(X : T()), (Y t¥(x X)), (Z S E(x X,y Y(X)))

This is a bit hard to parse, so here's some help:
e (), (x:X),and (x: X,y : Y(x)) are elements of €,
represented by “mini-contexts”.
e (): Cisin the empty mode context.
e (x:X):€isin the mode context (X : Z()).
e (x:X,y:Y(x))in mode context (X : T()), (Y : T(x : X)).
e (), T(x: X), and T(x : X,y : Y(x)) are mode types
(objects of D) obtained as pullbacks of ¥ to these elements.
e The whole thing is obtained by repeatedly extending by a
variable (X, Y, Z) belonging to a mode type that's well-defined
in the context of the previous variables.

45 /53

Dependent type 2-theory

If we have one comprehension object ¥ — €, a generic mode
context (object of M) looks something like this:

(X:Z0), (Y :Z(x: X)), (Z:F(x: X,y : Y(x)))

This is a bit hard to parse, so here's some help:
e (), (x:X),and (x: X,y : Y(x)) are elements of €,
represented by “mini-contexts”.
e (): Cisin the empty mode context.
e (x:X):€isin the mode context (X : Z()).
e (x:X,y:Y(x))in mode context (X : T()), (Y : T(x : X)).
e (), T(x: X), and T(x : X,y : Y(x)) are mode types
(objects of D) obtained as pullbacks of ¥ to these elements.
e The whole thing is obtained by repeatedly extending by a
variable (X, Y, Z) belonging to a mode type that's well-defined
in the context of the previous variables.

45 /53

Inverse categories via mini-contexts

[cf. Tsementzis—Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category
(X :2(), (Y : Z(x: X)) X<+Y
(X:Z0), (Y :Tx: X)), (Z:Tx:X,y:Y(x) | XY 2Z
(X)), (Y :T(x: X, x": X)) XeY
X
(X :20), (Y :20), (Z:F(x: X,y : Y)) v
X(Y
(X :20), (Y - T(x: X)), (Z: T(x: X)) z
AN
(X :2(), (Y : Z(x: X)), (Z:F(x: X)), X‘\Z(W
(W:Z(x: X,y :Y(x),z: Z(x)))

46 /53

Inverse categories via mini-contexts

[cf. Tsementzis—Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category
(X :%0), (Y Z(x: X)) X<+Y
(X:Z0), (Y :Tx: X)), (Z:Tx:X,y:Y(x) | XY 2Z
(X)), (Y :T(x: X, x": X)) XeY
X
(X :20), (Y :20), (Z:F(x: X,y : Y)) v
X(Y
(X :20), (Y - T(x: X)), (Z: T(x: X)) z
AN
(X :2(), (Y : Z(x: X)), (Z:F(x: X)), X‘\Z(W
(W:Z(x: X,y :Y(x),z: Z(x)))

46 /53

Inverse categories via mini-contexts

[cf. Tsementzis—Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category
(X :2(), (Y : Z(x: X)) X<+Y
(X:Z0), (Y Tx: X)), (Z:Tx:X,y:Y(X) | X<Y2Z
(X)), (Y :T(x: X, x": X)) XeY
X
(X:50), (Y :20), (Z:F(x: X,y : Y)) s
X(Y
(X:50), (Y T(x: X)), (Z: F(x : X)) z
AN
(X :2(), (Y : Z(x: X)), (Z:F(x: X)), X‘\Z(W
(W:Z(x: X,y :Y(x),z: Z(x)))

46 /53

Inverse categories via mini-contexts

[cf. Tsementzis—Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category
(X :2(), (Y : Z(x: X)) X<+Y
(X:Z0), (Y :Tx: X)), (Z:Tx:X,y:Y(x) | XY 2Z
(X :2(0), (Y :T(x: X, x": X)) XY
X
(X:50), (Y :20), (Z:F(x: X,y : Y)) s
X(Y
(X:50), (Y T(x: X)), (Z: F(x : X)) z
AN
(X :2(), (Y : Z(x: X)), (Z:F(x: X)), X‘\Z(W
(W:Z(x: X,y :Y(x),z: Z(x)))

46 /53

Inverse categories via mini-contexts

[cf. Tsementzis—Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category
(X :2(), (Y : Z(x: X)) X<+Y
(X:Z0), (Y :Tx: X)), (Z:Tx:X,y:Y(x) | XY 2Z
(X)), (Y :T(x: X, x": X)) XeY
X
(X:%0), (Y:%0).(Z:F(x: X,y : Y)) al
X(Y
(X:50), (Y T(x: X)), (Z: F(x : X)) z
AN
(X :2(), (Y : Z(x: X)), (Z:F(x: X)), X‘\Z(W
(W:Z(x: X,y :Y(x),z: Z(x)))

46 /53

Inverse categories via mini-contexts

[cf. Tsementzis—Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category
(X :2(), (Y : Z(x: X)) X<+Y
(X:Z0), (Y :Tx: X)), (Z:Tx:X,y:Y(x) | XY 2Z
(X)), (Y :T(x: X, x": X)) XeY
X
(X:%0), (Y:%0).(Z:F(x: X,y : Y)) al
X(Y
(X:50), (Y T(x: X)), (Z: F(x : X)) z
AN
(X :2(), (Y : Z(x: X)), (Z:F(x: X)), X‘\Z(W
(W:Z(x: X,y :Y(x),z: Z(x)))

46 /53

Inverse categories via mini-contexts

[cf. Tsementzis—Weaver, Finite Inverse Categories as Signatures]

Mode context Inverse category
(X :2(), (Y : Z(x: X)) X<+Y
(X:Z0), (Y :Tx: X)), (Z:Tx:X,y:Y(x) | XY 2Z
(X)), (Y :T(x: X, x": X)) XeY
X(\Z
(X :20), (Y :20), (Z:F(x: X,y : Y)) v
X(Y
(X :20), (Y - T(x: X)), (Z: T(x: X)) z
eV
(X 50). (v 30 00), (256 X)), | Tz
(W:Z(x: X,y:Y(x),z Z(x)))

46 /53

Dependent type theory over dependent type 2-theory

Semantically, we have a fibration of comprehension 2-categories over
D — M™. Syntactically, we have judgments-over-judgments:

(a: A), (b:B(a)) F C(a,b)type
(X:Z2()), (Y:2(x:X)) F Z(x:X,y:Y(x)) mode

(a:A), (b:B) F C((a,b)type
(X:2(), (Y:Z()) F F(x:X,y:Y)mode

(a:A), (b:B(a)) F C(a)
(X:2()), (Y:2(x:X)) F E(x:X)mode

47 /53

Dependent type 2-theory for an adjunction

Now suppose we have two comprehension objects T, — €7 and
T — €7, with a “comprehension morphism” consisting of terms

(r:ets) Fopl: ¢,
(T: &), (X : Te(MN) F pX : Te(pl)

which “commute with comprehension”. We have a “purely s”
2-DTT and a “purely ¢' 2-DTT, plus e.g.

Mode context “Inverse category”
((X : zs(()))),((y : ‘Ze((x : pX)))) p*(X) < Y
X T Y T(x:pX *
(Z:Tu(x: pX.y : Y(X))) p(X)+ Y+ Z
e fﬁpxy & pX) 7 (Y) « Z
»)/p*(Y)

(X;Ts()),(Y:‘Ze(x:pX)),(Z:Ts(x:X)) Z

48 /53

Dependent type 2-theory for an adjunction

Now suppose we have two comprehension objects T, — €7 and
T — €7, with a “comprehension morphism” consisting of terms

(r:ets) Fopl: ¢,
(T: &), (X : Te(MN) F pX : Te(pl)

which “commute with comprehension”. We have a “purely s”
2-DTT and a “purely ¢' 2-DTT, plus e.g.

Mode context “Inverse category”
(X - T:(), (Y : Te(x : pX)) p (X))« Y
2 %?l (Zx i g ‘“X’)) r Y2

(X;Ts()),(Y:‘Ze(x:pX)),(Z:Ts(x:X)) Z

48 /53

Dependent type 2-theory for an adjunction

Now suppose we have two comprehension objects T, — €7 and
T — €7, with a “comprehension morphism” consisting of terms

(r:ets) Fopl: ¢,
(T: &), (X : Te(MN) F pX : Te(pl)

which “commute with comprehension”. We have a “purely s”
2-DTT and a “purely ¢' 2-DTT, plus e.g.

Mode context “Inverse category”
(X :%:0), (Y : Te(x 2 pX)) prX) Y
A e
e A L T
() pe(Y)

(X;Ts()),(Y:‘Ze(x:pX)),(Z:Ts(x:X)) Z

48 /53

Dependent type 2-theory for an adjunction

Now suppose we have two comprehension objects T, — €7 and
T — €7, with a “comprehension morphism” consisting of terms
(r:ets) Fopl: ¢,
(r : 65), (X : ‘L(r)) FpX T (pl)

which “commute with comprehension”. We have a “purely s”
2-DTT and a “purely ¢' 2-DTT, plus e.g.

Mode context “Inverse category”
(X %0), (Y Telx - pX)) pX) Y
(>(<Z fé)()x = (XY bX)).)Y 2

))
(é :;83 I(JXy pY))7 p*(X) «p*(Y)+ Z

(X;Ts()),(Y:‘Ze(x:pX)),(Z:Ts(x:X)) Z

48 /53

Dependent type 2-theory for an adjunction

Now suppose we have two comprehension objects T, — €7 and
T — €7, with a “comprehension morphism” consisting of terms

(r:ets) Fopl: ¢,
(T: &), (X : Te(MN) F pX : Te(pl)

which “commute with comprehension”. We have a “purely s”
2-DTT and a “purely ¢' 2-DTT, plus e.g.

Mode context “Inverse category”
((X : zs(()))),((y : ‘Ze((x : pX)))) p*(X) < Y
X: % Y T(x:pX *
(Z:Tu(x: pX.y : Y(X))) p(X)+ Y+ Z
(é gg)x) g{ yfspxy X))), 0"(X) ¢ p*(Y) & Z
»)/p*(Y)

(X;‘35())_/(Y:‘Zc(x:pX)),(Z:‘IE(X:X)) 4

48 /53

Dependent type theory for an adjunction

(x: X)s, (a:A(x))

¢ F B(x,a) type,
(X:Ts0), (ViTe(xp(X))

Te(x:p(X),y:Y(x)) mode

(x:X)s, (y:Y(x))s F A(x,y) type,
(X:%s()), (Y:%s(x: X)) F T (xp(X),y:p(Y)(x)) mode

(x:X)s, (a:A(x))e F B(x)type,
(X:Zs()), (Y:Ze(x:p(X))) F FTs(x:X) mode

49 /53

The 2-dimensional aspect of 2-DTT

M and D are 2-categories, so we have 2-cell judgments. These
include variable-for-variable substitutions on mini-contexts:

(X:ZO) [(x: X)E(x,x): (xa: X, x2: X): €
(x:X)
XS0 e
-~

(x1:X,x2:X)

as well as generating 2-cells between generating mode morphisms:

(X :Zw()) | (x:pX) Eu(x): gX : Tu()

50 /53

Modal dependency

Suppose comprehension objects labeled m, n, ¢ with morphisms
p:m—n g:n—e rtim—e
and a 2-cell u: v = gp. Then we have a mode context
(X Tw0): (Y Talx s pX)), (21 Tl eX,y 2 Y (u(x))))

Note how the type of Z typechecks: x : tX, so u(x) : qp(X) which
is what qY depends on.

51/53

Modal dependency, semantically

(a:A)m, (b:B(a))a + C(a,b)type,
(X:Zm()), (Y:Za(xpX)) F (Z:F(xtX,y:qY(u(x)))) mode

C

e —— B, B,
[© o
tAn —— qPAm qAm

In general, what we get semantically is the oplax limit of an oplax
diagram of comprehension categories.

52 /53

Conclusion

@ All kinds of “type doctrines”, including geometric morphisms,
modalities, non-cartesian monoidal structures, and all kinds of
dependency, can be expressed syntactically as “dependent type
2-theories” .

® Each such 2-theory generates a class of 1-theories that
specialize to "dependent modal type theories” for describing
structures on, and diagrams of, (oo, 1)-toposes.

© We can hope to prove metatheorems like canonicity and

initiality once and for all, and then simply specialize them to
every new 2-theory.

53 /53

	Motivation: internal languages
	Unary type 2-theories
	Simple type 2-theories
	Dependent type 2-theories

