Type 2-theories

Michael Shulman

joint work with Dan Licata and Mitchell Riley

University of San Diego

April 12, 2018 HoTTEST

1 Motivation: internal languages

- **2** Unary type 2-theories
- Simple type 2-theories
- Opendent type 2-theories

The Internal Language Hypothesis

Homotopy type theory is an internal language for $(\infty, 1)$ -toposes.

The Internal Language Hypothesis

Homotopy type theory is an internal language for $(\infty, 1)$ -toposes.

I propose this as analogous to the Homotopy Hypothesis, Stabilization Hypothesis, Cobordism Hypothesis, etc. from higher category theory.

"One can regard the above hypothesis, and those to follow, either as a conjecture pending a general definition... or as a feature one might desire of such a definition."

> John Baez and Jim Dolan,
> Higher-Dimensional Algebra and Topological Quantum Field Theory

Applications of the internal language hypothesis

The Internal Language Hypothesis

Homotopy type theory is an internal language for $(\infty, 1)$ -toposes.

Some theorems that are proven:

- ($\infty,1)\text{-toposes}$ are presented by CwAs w/ HITs^1
- Some ∞ -object classifiers are presented by CwA universes²
- + Lex ($\infty,1)\text{-categories}$ are equivalent to CwAs w/ Σ,Id^3

Theorems we still need to prove:

- The syntax of type theory is the initial CwA w/ \ldots
- All ∞ -object classifiers are presented by CwA universes

Definitions we still need to make:

- What is a general notion of "higher inductive type"?
- What is an "elementary $(\infty, 1)$ -topos"?
- ¹Cisinski, Gepner–Kock, Lumsdaine–S.
- ²Voevodsky, S.

³Kapulkin–Lumsdaine, Kapulkin–Szumiło

Applications of the internal language hypothesis

The Internal Language Hypothesis

Homotopy type theory is the internal language of $(\infty, 1)$ -toposes.

Definitions we should **not** make:

- Homotopy type theory consists of what's true in simplicial sets.
- Homotopy type theory consists of what's true in cubical sets.

If you will forgive me saying it again

- One model is not enough!
- Please don't talk about "the intended model"!

Why?

One reason: applications of homotopy type theory to new results in classical homotopy theory are much closer to our reach if we go through other models (e.g. Blakers–Massey in Goodwillie calculus).

To a homotopy type theorist, the Internal Language Hypothesis can be a "working definition" of an $(\infty, 1)$ -topos: a collection of objects and morphisms that can interpret the types and terms of HoTT.

Examples

- ∞Gpd: types are ∞-groupoids ("spaces") (The ∞-version of the 1-topos Set)
- $\infty \mathcal{G}pd^{C^{\mathrm{op}}}$: types are presheaves of ∞ -groupoids on C
- Sh(X): types are sheaves of ∞ -groupoids on X

But the situation for functors between $(\infty, 1)$ -toposes is subtler.

$(\infty, 1)$ -geometric morphisms

Definition

A logical functor $L : \mathcal{E} \to \mathcal{S}$ preserves all relevant structure.

Definition

A geometric morphism $p : \mathcal{E} \to \mathcal{S}$ is an adjoint pair $p^* : \mathcal{F} \rightleftharpoons \mathcal{E} : p_*$ such that p^* preserves finite limits.

Examples

- $f: C \to D$ a functor, $f^*: \infty \mathcal{G}pd^{D^{\mathrm{op}}} \rightleftharpoons \infty \mathcal{G}pd^{C^{\mathrm{op}}} : \operatorname{Ran}_f$ is a geometric morphism $\infty \mathcal{G}pd^{C^{\mathrm{op}}} \to \infty \mathcal{G}pd^{D^{\mathrm{op}}}$.
- If f : X → Y is a continuous map, there is a geometric morphism Sh(f) : Sh(X) → Sh(Y).
- Any \mathcal{E} has a unique geometric morphism $p: \mathcal{E} \to \infty \mathcal{G}pd$:
 - $p_*(A) = \mathcal{E}(1, A)$ is the global sections
 - $p^*(X) = \coprod_X 1$ is a discrete or constant object on X.

Internal languages for geometric morphisms?

Fact

A lot of interesting theorems in $(\infty,1)$ -topos theory are not about just one topos, but about diagrams of toposes and geometric morphisms between them.

Example

- A ($\infty, 1$)-topos ${\mathcal E}$ is. . .
 - ∞ -connected if $p^* : \infty \mathcal{G}pd \to \mathcal{E}$ is fully faithful
 - locally ∞ -connected if p^* has a left adjoint
 - ∞ -compact if p_* preserves filtered colimits
 - . . .

Problem

Is there a version of homotopy type theory that can be an internal language for diagrams of $(\infty, 1)$ -toposes and geometric morphisms?

Applications of a theory in progress

We claim that yes, there is such a type theory, where the functors p^* , p_* appear as higher modalities. The fully general and dependently typed version is still a work in progress, but already it has been specialized to various applications:

- Internal universes in topos models (L.-Orton-Pitts-Spitters '18)
 - One modality \flat
- Spatial and real-cohesive type theory (S. '17)
 - Three modalities $\int \dashv \flat \dashv \sharp$
- Differential cohesion (L.-S.-Gross-New-Paykin-R.-Wellen work in progress)
 - Six modalities $\int \dashv \flat \dashv \ddagger$ and $\Re \dashv \Im \dashv \&$.
- Type theory for parametrized pointed spaces and spectra (Finster-L.-Morehouse-R. work in progress)
 - One self-adjoint modality $atural \dashv b$
 - Non-cartesian "smash product" monoidal structure
- Directed type theory with cores and opposites (work in progress)

1 Motivation: internal languages

2 Unary type 2-theories

Simple type 2-theories

Opendent type 2-theories

Suppose we have one geometric morphism $p: \mathcal{E} \to \mathcal{S}$. We might imagine a type theory with:

- An " \mathcal{E} -type theory" $\Gamma \vdash_{\mathcal{E}} s : A$
- A separate "S-type theory" $\Delta \vdash_S t : B$
- An operation p^* making any S-type into an \mathcal{E} -type
- An operation p_* making any \mathcal{E} -type into an \mathcal{S} -type

Suppose we have one geometric morphism $p : \mathcal{E} \to \mathcal{S}$. We might imagine a type theory with:

- An " \mathcal{E} -type theory" $\Gamma \vdash_{\mathcal{E}} s : A$
- A separate " \mathcal{S} -type theory" $\Delta \vdash_{\mathcal{S}} t : B$
- An operation p^* making any \mathcal{S} -type into an \mathcal{E} -type
- An operation p_* making any \mathcal{E} -type into an \mathcal{S} -type
- Functoriality rules for p^* and p_*
- Adjunction rules for $p^* \dashv p_*$

Suppose we have one geometric morphism $p: \mathcal{E} \to \mathcal{S}$. We might imagine a type theory with:

- An " \mathcal{E} -type theory" $\Gamma \vdash_{\mathcal{E}} s : A$
- A separate "S-type theory" $\Delta \vdash_S t : B$
- An operation p^* making any \mathcal{S} -type into an \mathcal{E} -type
- An operation p_* making any \mathcal{E} -type into an \mathcal{S} -type
- Functoriality rules for p^* and p_*
- Adjunction rules for $p^* \dashv p_*$
- Higher functoriality rules for p^* and p_* on homotopies
- Higher adjunction rules for homotopies
- Coherence laws
- More coherence laws...

Design principles for type theory and category theory

Type theory

Types should be defined by introduction, elimination, β and η rules.

Category theory

Objects should be defined by universal properties.

Good type theories satisfy canonicity and normalization. Structures defined by universal properties are automatically fully coherent.

Universal properties for adjunctions

Definition

A profunctor $\mathcal{E} \rightarrow \mathcal{S}$ is a category \mathcal{H} equipped with a functor $\mathcal{H} \rightarrow 2 = (0 \rightarrow 1)$, with fibers $\mathcal{H}_0 = \mathcal{S}$ and $\mathcal{H}_1 = \mathcal{E}$.

- Hom-sets $\mathcal{H}(X, A)$ of "heteromorphisms" for $X \in \mathcal{S}$, $A \in \mathcal{E}$
- With actions by arrows in ${\mathcal E}$ and ${\mathcal S}$

Definition

- A left representation of *H* at X ∈ S is p^{*}X ∈ E with an isomorphism E(p^{*}X, A) ≅ H(X, A).
- A right representation of \mathcal{H} at $A \in \mathcal{E}$ is $p_*A \in \mathcal{S}$ with an isomorphism $\mathcal{S}(X, p_*A) \cong \mathcal{H}(X, A)$.

Insofar as they exist, we automatically have $p^* \dashv p_*$ since

$$\mathcal{E}(p^*X, A) \cong \mathcal{H}(X, A) \cong \mathcal{S}(X, p_*A).$$

A hierarchy of type theories

Dependent type theory is very complicated, so we build up in stages.

 Unary type theory: no dependency, only one type in context. Semantics in categories.

$$x: A \vdash s: B$$

Simple type theory: no dependency, multiple types in context. Semantics in categories with products, or multicategories.

$$x: A, y: B, z: C \vdash s: D$$

Dependent type theory: types can depend on previous ones.
 Semantics in lex categories (comprehension categories etc.)

$$x: A, y: B(x), z: C(x, y) \vdash s: D(x, y, z)$$

$$\begin{array}{ccc} X \operatorname{type}_{\mathcal{S}} & A \operatorname{type}_{\mathcal{E}} \\ x : X \vdash_{\mathcal{S}} t : Y & x : X \vdash_{\mathcal{H}} s : A & a : A \vdash_{\mathcal{E}} s : B \end{array}$$

$$\begin{array}{cccc} X \operatorname{type}_{\mathcal{S}} & A \operatorname{type}_{\mathcal{E}} \\ x : X \vdash_{\mathcal{S}} t : Y & x : X \vdash_{\mathcal{H}} s : A & a : A \vdash_{\mathcal{E}} s : B \\ & \frac{x : X \vdash_{\mathcal{S}} t : Y & y : Y \vdash_{\mathcal{S}} s : Z}{x : X \vdash_{\mathcal{S}} s[t/y] : Z} \\ & \frac{a : A \vdash_{\mathcal{E}} t : B & b : B \vdash_{\mathcal{E}} s : C}{a : A \vdash_{\mathcal{E}} s[t/b] : C} \\ & \frac{x : X \vdash_{\mathcal{S}} t : Y & y : Y \vdash_{\mathcal{H}} s : A}{x : X \vdash_{\mathcal{H}} s[t/y] : A} \\ & \frac{x : X \vdash_{\mathcal{H}} t : A & a : A \vdash_{\mathcal{E}} t : B}{x : X \vdash_{\mathcal{H}} s[t/a] : B} \end{array}$$

Unary type theory for an adjunction

$$\begin{aligned} \frac{A \operatorname{type}_{\mathcal{E}}}{p_*A \operatorname{type}_{\mathcal{S}}} & p_*\operatorname{-FORM} & \frac{X \operatorname{type}_{\mathcal{S}}}{p^*X \operatorname{type}_{\mathcal{E}}} & p^*\operatorname{-FORM} \\ \frac{(x:X) \vdash_{\mathcal{H}} (s:A)}{(x:X) \vdash_{\mathcal{S}} (s^{\sharp}:p_*A)} & p_*\operatorname{-INTRO} & \frac{(x:X) \vdash_{\mathcal{S}} (s:p_*A)}{(x:X) \vdash_{\mathcal{H}} (s_{\sharp}:A)} & p_*\operatorname{-ELIM} \\ \frac{(y:Y) \vdash_{\mathcal{S}} (t:X)}{(y:Y) \vdash_{\mathcal{H}} (t^{\flat}:p^*X)} & p^*\operatorname{-INTRO} \\ \frac{(b:B) \vdash_{\mathcal{E}} (s:p^*X) & (x:X) \vdash_{\mathcal{H}} (c:C)}{(b:B) \vdash_{\mathcal{E}} ((\operatorname{let} x^{\flat}:=s \operatorname{in} c):C)} & p^*\operatorname{-ELIM} \\ s^{\sharp}{}_{\sharp} = s & s_{\sharp}{}^{\sharp} = s & (\operatorname{let} x^{\flat}:=t^{\flat} \operatorname{in} c) = c \\ (\operatorname{let} x^{\flat}:=t \operatorname{in} c[x^{\flat}/y]) = c[t/y] \end{aligned}$$

Unary type theory for an adjunction

$$\frac{A \operatorname{type}_{\mathcal{E}}}{p_*A \operatorname{type}_{\mathcal{S}}} p_*\operatorname{-FORM} \qquad \frac{X \operatorname{type}_{\mathcal{S}}}{p^*X \operatorname{type}_{\mathcal{E}}} p^*\operatorname{-FORM}$$

$$\frac{(x:X) \vdash_{\mathcal{H}} (s:A)}{(x:X) \vdash_{\mathcal{S}} (s^{\sharp}:p_*A)} p_*\operatorname{-INTRO} \qquad \frac{(x:X) \vdash_{\mathcal{S}} (s:p_*A)}{(x:X) \vdash_{\mathcal{H}} (s_{\sharp}:A)} p_*\operatorname{-ELIM}$$

$$\frac{(y:Y) \vdash_{\mathcal{S}} (t:X)}{(y:Y) \vdash_{\mathcal{H}} (t^{\flat}:p^*X)} p^*\operatorname{-INTRO}$$

$$\frac{(b:B) \vdash_{\mathcal{E}} (s:p^*X) \qquad (x:X) \vdash_{\mathcal{H}} (c:C)}{(b:B) \vdash_{\mathcal{E}} ((\operatorname{let} x^{\flat}:=s \operatorname{in} c):C)} p^*\operatorname{-ELIM}$$

$$s^{\sharp}{}_{\sharp} = s \qquad s_{\sharp}{}^{\sharp} = s \qquad (\operatorname{let} x^{\flat}:=t^{\flat} \operatorname{in} c) = c$$

$$(\operatorname{let} x^{\flat}:=t \operatorname{in} c[x^{\flat}/y]) = c[t/y]$$

Example

S4 modal logic has a modality \Box , with $\Box P$ sometimes interpreted as "*P* is necessarily true", satisfying laws:

 $\Box(P \land Q) = \Box P \land \Box Q \qquad \Box \top = \top \qquad \Box P \to P \qquad \Box P \to \Box \Box P$

In other words, \Box is a product-preserving comonad. Pfenning–Davies gave a type theory for \Box , and Reed decomposed it as p^*p_* for an adjunction $p^* \dashv p_*$, inspiring our framework.

Example

In a cohesive topos $p : \mathcal{E} \to \mathcal{S}$:

- the objects of ${\mathcal E}$ are "spaces" or "manifolds"
- p^*X gives X the "discrete topology"
- p_*X is the underlying set of points of X

Unary type theory for diagrams

 ${\cal M}$ a category (the opposite "shape" of a diagram of toposes).

Unary modal type theory

- A unary type theory $x : X \vdash_{1_{\mathfrak{m}}} t : Y$ for each $\mathfrak{m} \in \mathcal{M}$.
- Hetero-judgments $(x : X)_{\mathfrak{m}} \vdash_{\mathfrak{p}} (s : A)_{\mathfrak{n}}$ for each $\mathfrak{p} : \mathfrak{m} \to \mathfrak{n}$.
- Appropriate cut rules, and type operations as desired:

$$\frac{X \text{type}_{\mathfrak{m}}}{\mathfrak{p}^* X \text{type}_{\mathfrak{n}}} \qquad \qquad \frac{A \text{type}_{\mathfrak{n}}}{\mathfrak{p}_* X \text{type}_{\mathfrak{m}}}$$

Semantics

It has semantics in categories $\mathcal{H} \to \mathcal{M}$ over $\mathcal{M},$ where

- If all \mathfrak{p}^* exist, the functor $\mathcal{H} \to \mathcal{M}$ is an opfibration.
- If all \mathfrak{p}_* exist, the functor $\mathcal{H} \to \mathcal{M}$ is a fibration.

If $\mathfrak{p}^*/\mathfrak{p}_*$ all exist, $\mathcal{H} \to \mathcal{M}$ is a bifibration, hence equivalent to a functor $\mathcal{M}^{\mathrm{op}} \to \mathcal{C}at_{\mathrm{radj}}$.

1-categories aren't enough

Actually want functors $\mathcal{M}^{\mathrm{op}} \rightarrow \mathcal{C}at_{\mathrm{radj}}$ where \mathcal{M} is a 2-category.

Examples

- If ${\mathcal M}$ contains an adjunction, get an adjoint triple.
- If ${\mathcal M}$ contains a monad, get an adjoint monad/comonad pair.

These arise naturally on local/cohesive/tangent toposes.

Definition (Hermida, Buckley)

A 2-functor $\pi: \mathcal{H} \to \mathcal{M}$ is:

- A local fibration if each functor on hom-categories $\mathcal{H}(X, A) \to \mathcal{M}(\pi X, \pi A)$ is a fibration (+ axioms).
- A 2-fibration if it is a local fibration and has p_* 's.
- A 2-opfibration if it is a local fibration and has p*'s.

Theorem (Baković, Buckley)

(Locally discrete 2-bifib. $\mathcal{H} \to \mathcal{M}$) \simeq (functors $\mathcal{M}^{\mathrm{op}} \to \mathcal{C}at_{\mathrm{radj}}$).

Unary type theory for diagrams

 ${\cal M}$ a 2-category (the opposite "shape" of a diagram of toposes).

Unary modal type theory (Licata-S. '16)

- A unary type theory $x : X \vdash_{1_{\mathfrak{m}}} t : Y$ for each $\mathfrak{m} \in \mathcal{M}$.
- Hetero-judgments $(x : X)_{\mathfrak{m}} \vdash_{\mathfrak{p}} (s : A)_{\mathfrak{n}}$ for each $\mathfrak{p} : \mathfrak{m} \to \mathfrak{n}$.
- Appropriate cut rules and type operations $\mathfrak{p}^*,\mathfrak{p}_*$
- Structural rules for 2-cells $\mathfrak{u} : \mathfrak{p} \Rightarrow \mathfrak{q} : \mathfrak{m} \to \mathfrak{n}$

$$\frac{(x:X)_{\mathfrak{m}}\vdash_{\mathfrak{q}}(s:A)_{\mathfrak{n}}}{(x:X)_{\mathfrak{m}}\vdash_{\mathfrak{p}}(\mathfrak{u}^*s:A)_{\mathfrak{n}}}$$

Semantics

Locally discrete 2-bifibrations $\mathcal{H}\to\mathcal{M},$ hence functors $\mathcal{M}^{\rm op}\to\mathcal{C}\textit{at}_{\rm radj}.$

The objects of \mathcal{M} are sometimes called modes (cf. modal logic).

1 Motivation: internal languages

2 Unary type 2-theories

3 Simple type 2-theories

Dependent type 2-theories

Simple type theory for an adjunction

In unary type theory, we can think of $(x : X) \vdash_{\mathcal{H}} (s : A)$ as representing a morphism $p^*X \to A$.

Idea for simple type theory

Allow a term in an \mathcal{E} -type to depend on multiple variables, some in \mathcal{S} -types and others in \mathcal{E} -types.

- (x : X)_S, (y : Y)_S, (a : A)_E, (b : B)_E ⊢ (t : C)_E represents a morphism p^{*}X × p^{*}Y × A × B → C.
- This turns out to require/imply that p^* preserves products.
- $(x:X)_{\mathcal{S}} \vdash (t:C)_{\mathcal{E}}$ is the old $(x:X) \vdash_{\mathcal{H}} (t:C)$.
- $(a:A)_{\mathcal{E}} \vdash (t:C)_{\mathcal{E}}$ is the old $(a:A) \vdash_{\mathcal{E}} (t:C)$.
- Still have (x : X)_S ⊢ (s : Y)_S, the old (x : X) ⊢_S (s : Y). Terms in S-types are not allowed to depend on variables in E-types. "Only left adjoints can appear in contexts."
Simple type theory for an adjunction, rules

$$\frac{\Gamma_{\mathcal{S}} \vdash (s:A)_{\mathcal{E}}}{\Gamma_{\mathcal{S}} \vdash (s^{\sharp}:p_{*}A)_{\mathcal{S}}} p_{*}\text{-INTRO} \qquad \frac{\Gamma_{\mathcal{S}} \vdash (t:p_{*}A)_{\mathcal{S}}}{\Gamma_{\mathcal{S}}, \Delta_{\mathcal{E}} \vdash (t_{\sharp}:A)_{\mathcal{E}}} p_{*}\text{-ELIM}$$

$$\frac{\Gamma_{\mathcal{S}} \vdash (t:X)_{\mathcal{S}}}{\Gamma_{\mathcal{S}}, \Delta_{\mathcal{E}} \vdash (t^{\flat}: p^*X)_{\mathcal{E}}} p^*\text{-INTRO}$$

$$\frac{\Gamma_{\mathcal{S}}, \Delta_{\mathcal{E}} \vdash (t:p^*X)_{\mathcal{E}}}{\Gamma_{\mathcal{S}}, \Delta_{\mathcal{E}} \vdash ((\mathsf{let}\ x^{\flat} \coloneqq t \ \mathsf{in}\ c):C)_{\mathcal{E}}} p^*\text{-ELIM}}{\Gamma_{\mathcal{S}}, \Delta_{\mathcal{E}} \vdash ((\mathsf{let}\ x^{\flat} \coloneqq t \ \mathsf{in}\ c):C)_{\mathcal{E}}}$$

On the categorical side, we should replace:

- categories \rightsquigarrow cartesian monoidal categories
- 2-categories ~> cartesian monoidal 2-categories
- objects in a 2-category → cartesian monoidal objects

Definition

A cartesian monoidal object $\mathfrak{m} \in \mathcal{M}$ is one with right adjoints to $\Delta : \mathfrak{m} \to \mathfrak{m} \times \mathfrak{m}$ and $! : \mathfrak{m} \to 1$. Let \mathcal{M} be the cartesian monoidal 2-category freely generated by two cartesian monoidal objects $\mathfrak{e}, \mathfrak{s}$ and a cartesian morphism $\mathfrak{p} : \mathfrak{s} \to \mathfrak{e}$.

- Objects like $\mathfrak{s} \times \mathfrak{s} \times \mathfrak{e} \times \mathfrak{e} \times \mathfrak{e}$
- Morphisms like $\mathfrak{s} \times \mathfrak{s} \to \mathfrak{s}$ and $\mathfrak{e} \times \mathfrak{e} \times \mathfrak{e} \to \mathfrak{e}$ and $\mathfrak{s} \times \mathfrak{s} \times \mathfrak{e} \times \mathfrak{e} \times \mathfrak{e} \to \mathfrak{e} \times \mathfrak{e} \times \mathfrak{e} \times \mathfrak{e} \times \mathfrak{e} \to \mathfrak{e}$

Definition

A cartesian monoidal profunctor $\mathcal{E} \to \mathcal{S}$ is a cartesian monoidal local fibration $\mathcal{H} \to \mathcal{M}$ with fibers $\mathcal{H}_{\mathfrak{e}} = \mathcal{E}$ and $\mathcal{H}_{\mathfrak{s}} = \mathcal{S}$.

- Think of the fiber $\mathcal{H}_{\mathfrak{s} \times \mathfrak{s} \times \mathfrak{e} \times \mathfrak{e} \times \mathfrak{e}}$ as $\mathcal{S} \times \mathcal{S} \times \mathcal{E} \times \mathcal{E} \times \mathcal{E}$ ("Contexts of a specified length and shape")⁴
- Heteromorphisms like $(X_{\mathfrak{s}}, Y_{\mathfrak{s}}, A_{\mathfrak{e}}, B_{\mathfrak{e}}, C_{\mathfrak{e}}) \rightarrow D_{\mathfrak{e}}.$
- Local fibration condition gives $[(A, A) \rightarrow B] \rightsquigarrow [A \rightarrow B]$

⁴This isn't quite true, but the problem goes away if we use cartesian 2-multicategories.

Simple modal type theory

Let ${\mathcal M}$ be a cartesian monoidal 2-category.

Simple modal type theory (Licata-S.-Riley '17)

- A class of types for each $\mathfrak{m} \in \mathcal{M}$ (the modes).
- Terms like $(x : X)_{\mathfrak{m}_1}, (y : Y)_{\mathfrak{m}_2} \vdash_{\mathfrak{p}} (s : A)_{\mathfrak{n}}$ for each $\mathfrak{p} : \mathfrak{m}_1 \times \mathfrak{m}_2 \to \mathfrak{n}$.
- Appropriate cut rules and type operations p^*, p_*
- Structural rules for 2-cells $\mathfrak{u}:\mathfrak{p}\Rightarrow\mathfrak{q}:(\mathfrak{m}_1,\ldots,\mathfrak{m}_n)\rightarrow\mathfrak{n}$

$$\frac{\Gamma \vdash_{\mathfrak{q}} a : A}{\Gamma \vdash_{\mathfrak{p}} \mathfrak{u}^* s : A}$$

Semantics

Locally discrete 2-bifibrations $\mathcal{H} \to \mathcal{M}$.

An unexpected bonus

In a cartesian monoidal 2-category, we can also talk about:

- Objects with non-cartesian monoidal structure $\otimes:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$
- Objects with multiple monoidal structures (e.g. \otimes, \times)
- Adjunctions between cartesian and non-cartesian objects
- etc.

We therefore immediately get as special cases of our type theory:

- Intuitionistic linear logic
- Bunched implication
- A decomposition like $\Box = p^* p_*$ for the linear-logic modality !

• etc.

An unexpected bonus

In a cartesian monoidal 2-category, we can also talk about:

- Objects with non-cartesian monoidal structure $\otimes:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$
- Objects with multiple monoidal structures (e.g. \otimes, \times)
- Adjunctions between cartesian and non-cartesian objects
- etc.

We therefore immediately get as special cases of our type theory:

- Intuitionistic linear logic
- Bunched implication
- A decomposition like $\Box = p^* p_*$ for the linear-logic modality !
- etc.

Furthermore:

• Product types and function types

 $A \times B$ $A \to B$ $A \otimes B$ $A \multimap B$

are unified with p^*, p_* as (op)fibrational actions in $\mathcal{H} \to \mathcal{M}$.

One last enhancement

The cartesian monoidal 2-category ${\cal M}$ can also be presented by a type-theoretic syntax!

Example

$$x: \mathfrak{e}, y: \mathfrak{e} \vdash x \times y: \mathfrak{e}$$

$$x: \mathfrak{s}, y: \mathfrak{s} \vdash x \times y: \mathfrak{s}$$

$$x: \mathfrak{s} \vdash \mathfrak{p}(x): \mathfrak{e}$$

$$x: \mathfrak{s}, y: \mathfrak{s} \vdash \mathfrak{p}(x \times y) = \mathfrak{p}(x) \times \mathfrak{p}(y)$$

$$x: \mathfrak{s} \vdash x \Rightarrow x \times x$$
:

This is the type 2-theory of a cartesian adjunction, written in simple type 3-theory. What do I mean by that?

Functorial semantics

Type theory

Category theory

A theory is a collection of generating types, terms, and axioms

A theory is the structured category L_T freely generated by a model

A model of a theory sends its types/terms to objects/morphisms A model of a theory T in **C** is a morphism $L_T \rightarrow \mathbf{C}$

Functorial semantics

Type theory

Category theory

A doctrine specifies a "kind of type theory": the type forming operations and their rules A doctrine is a 2-category of structured categories, such as "cartesian monoidal categories"

A theory in a doctrine is a collection of generating types, terms, and axioms A theory in a doctrine \mathcal{K} is the $L_T \in \mathcal{K}$ freely generated by a model

A model of a theory sends its types/terms to objects/morphisms A model of a theory T in **C** is a morphism $L_T \rightarrow \mathbf{C}$

Remark

Unfortunately, the phrase "type theory" gets applied to both theories and doctrines.

- When we state the ILH as "the category of dependent type theories is equivalent to the category of lcccs", each such "dependent type theory" is a theory.
- But "Martin-Löf dependent type theory" is a doctrine (namely, the doctrine in which the above theories are written).

This is a source of some confusion.

Standard approach to type theory

- **1** Given a categorical structure, find a syntactic doctrine.
- **2** OR: given a syntactic doctrine, find a categorical structure.
- 3 Prove metatheorems like initiality, canonicity, ...

Problems with this

- Without a general framework, can be hard to "find" correspondents.
- Have to prove all the metatheorems over and over again for each doctrine.

Our approach

Treat doctrines as "categorified theories" in a "categorified doctrine", about which we can prove the theorems once and for all.

Type theory

Category theory

A doctrine specifies a "kind of type theory": the type forming operations and their rules A doctrine is a 2-category of structured categories, such as "cartesian monoidal categories"

A theory in a doctrine is a collection of generating types, terms, and axioms A theory in a doctrine \mathcal{K} is the $L_T \in \mathcal{K}$ freely generated by a model

A model of a theory sends its types/terms to objects/morphisms A model of a theory T in **C** is a morphism $L_T \rightarrow \mathbf{C}$

Type theory

A 2-theory specifies a "kind of type theory": the type forming operations and their rules

Category theory

A 2-theory is a structured 2-category freely generated by something

A 1-theory in a 2-theory is a collection of generating types, terms, and axioms A 1-theory in a 2-theory is a morphism $L_K \rightarrow \mathbf{Cat}$

A 0-theory in a 1-theory sends its types/terms to objects/morphisms

A 0-theory in a 1-theory T in **C** is a morphism $L_T \rightarrow \mathbf{C}$

Type theory

Category theory

A 3-theory is like "unary type theory", "simple type theory", or "dependent type theory" A 3-theory is a 3-category like "2-categories", "cartesian monoidal 2-categories", or ...

A 2-theory specifies a "kind of type theory": the type forming operations and their rules A 2-theory in a 3-theory is an object of it freely generated by something

Type theory

A 3-theory is like "unary type theory", "simple type theory", or "dependent type theory"

Category theory

A 3-theory is a 3-category like "2-categories", "cartesian monoidal 2-categories", or ...

A 2-theory specifies a "kind of type theory": the type forming operations and their rules A 2-theory in a 3-theory is an object of it freely generated by something

We can generate a semantic 2-theory using a syntactic type 2-theory (or mode theory) expressed in a particular 3-theory.

The hierarchy of 3-theories

Now we can describe the process of "building up to the full complexity of dependent type theory" as a progression through richer 3-theories:

1 LS'16: unary type theory, semantics in 2-categories.

 $x : A \vdash s : B$

2 LSR'17: simple type theory, semantics in cartesian 2-categories.

$$x: A, y: B, z: C \vdash s: D$$

 Now: dependent type theory, semantics in comprehension 2-categories.

$$x : A, y : B(x), z : C(x, y) \vdash s : D(x, y, z)$$

1 Motivation: internal languages

- **2** Unary type 2-theories
- Simple type 2-theories
- Opendent type 2-theories

What about dependent type theory?

Dependent type theory is a lot more complicated because...

- **1** In $\Gamma \vdash_{\mathfrak{p}} t : Z$, the type Z must also depend on Γ in some way that is recorded, $\Gamma \vdash_{\mathfrak{q}} Z$ type.
- 2 Each type in Γ also depends on the previous ones in some way that must be also be recorded.
- **3** These dependencies have to be related in some coherent way.

Example

If $(x : A)_{\mathfrak{s}} \vdash_{\mathfrak{p}} B$ type, then $(x : A)_{\mathfrak{s}}, (y : B)_{\mathfrak{e}} \vdash C$ type, must depend on x through some $\mathfrak{r} : \mathfrak{s} \to \mathfrak{t}$ and on y through some $\mathfrak{q} : \mathfrak{e} \to \mathfrak{t}$. Do we need $\mathfrak{qp} = \mathfrak{r}$? (In fact, $\mathfrak{r} \Rightarrow \mathfrak{qp}$ is enough.)

More about dependent type theory

Dependent type theory is a lot more complicated because...

We need "dependency graphs" that are more complicated than linear. In ordinary DTT, if B and C both depend on A we can write x : A, y : B(x), z : C(x) in order, where the dependence of C on y is trivial. But in modal type theory such a "trivial dependency" may not even be syntactically well-formed.

Example

If $(x : A)_{\mathfrak{s}} \vdash_{\mathfrak{p}} B$ type, for $\mathfrak{p} : \mathfrak{s} \to \mathfrak{e}$, and $(x : A)_{\mathfrak{s}} \vdash_{\mathfrak{q}} C$ type, for $\mathfrak{q} : \mathfrak{s} \to \mathfrak{t}$, we want to allow a context like $(x : A)_{\mathfrak{s}}, (y : B)_{\mathfrak{e}}, (z : C)_{\mathfrak{t}}$. But there may be no morphism $\mathfrak{e} \to \mathfrak{t}$ at all, hence no way for C to depend on y even "trivially".

The context has to be structured like a directed acyclic graph or inverse category:

This is a snapshot of work in progress. Tomorrow it might look very different. (And then the day after that different yet again.)

A semantic approach

One of the usual semantic correspondents of ordinary DTT is:

Definition

A comprehension category is a commuting triangle of functors

where. . .

1 C has a terminal object.

2 C^{\rightarrow} is the arrow category, with cod the codomain projection.

- **3** π : $T \rightarrow C$ is a fibration.
- **4** χ preserves cartesian arrows.

Objects of C are "contexts", objects of T are "types in context".

Comprehension 2-categories

By analogy with our use of 2-categories in the unary case, and cartesian monoidal 2-categories in the simple case, we define:

Definition

A comprehension 2-category is a commuting triangle of 2-functors

- 1 \mathcal{M} has a terminal object.
- 2 $\mathcal{M}^{\rightarrow}$ is the arrow 2-category, cod the codomain projection.
- **3** $\pi: \mathcal{D} \to \mathcal{M}$ is a 2-fibration.
- **4** χ preserves cartesian 1-cells and 2-cells.

The pieces of a comprehension 2-category

objects of \mathcal{M} (mode contexts) possible "shapes" of contexts (record modes and dependency structure)

morphisms of \mathcal{M} (mode substitutions)

shapes of context morphisms

objects of \mathcal{D} (mode types)

modes/shapes of dependent types (record mode and dependency structure)

sections of $\chi(\mathfrak{m})$ (mode terms) shapes of terms

The basic comprehension 2-category

- If a 1-category C has pullbacks, then cod : C→ → C is a fibration, corresponding to the pseudofunctor c → C/c.
- Even if a 2-category *M* has pullbacks, cod : *M*[→] → *M* is not a 2-fibration! (m → *M*/m is not functorial on 2-cells.)

The basic comprehension 2-category

- If a 1-category C has pullbacks, then cod : C→ → C is a fibration, corresponding to the pseudofunctor c → C/c.
- Even if a 2-category *M* has pullbacks, cod : *M*[→] → *M* is not a 2-fibration! (m → *M*/m is not functorial on 2-cells.)
- What is functorial is m → *Fib*(*M*)/m, the internal fibrations over m.

More generally, in any comprehension 2-category, $\chi : \mathcal{D} \to \mathcal{M}^{\to}$ lands inside $\mathcal{F}ib(\mathcal{M})$.

Internal comprehension categories

- For simple type theory, \mathcal{M} is generated by (e.g.) a cartesian monoidal object.
- For dependent type theory, we should instead use "objects with finite limits".
- But the type-theoretic way to talk about categories with finite limits is using *dependent type theory* with Σ, Id, which semantically means a comprehension category.

Definition

- A comprehension object in a comprehension 2-category $\mathcal{D} \to \mathcal{M}$ is:
 - An object $\mathfrak{C} \in \mathcal{M}$ with an internal terminal object \diamond .
 - An object ${\mathfrak T}$ in the fiber ${\mathcal D}_{\mathfrak c}$ (a "formal fibration" over ${\mathfrak C}).$
 - A morphism C.T → C[→] of internal fibrations over C in M (here C[→] is the copower by the arrow category in M).

- From a comprehension category we can define categories of Reedy fibrant diagrams on inverse categories.
- We can internalize this for a comprehension object in a comprehension 2-category.
- Thus: the "context shapes" are inverse categories.

- From a comprehension category we can define categories of Reedy fibrant diagrams on inverse categories.
- We can internalize this for a comprehension object in a comprehension 2-category.
- Thus: the "context shapes" are inverse categories.

One further improvement:

- Reedy fibrant diagrams are tedious to describe in comprehension-category language.
- But we already have a better notation for comprehension categories: dependent type theory itself!
- Use a mini-DTT to describe the modes and mode contexts.⁵

⁵cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*

 $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)), (Z:\mathfrak{T}(x:X,y:Y(x)))$

- (), (x : X), and (x : X, y : Y(x)) are elements of C, represented by "mini-contexts".
 - () : \mathfrak{C} is in the empty mode context.
 - $(x : X) : \mathfrak{C}$ is in the mode context $(X : \mathfrak{T}())$.
 - (x:X, y:Y(x)) in mode context $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)).$
- \$\tilde{\mathcal{T}}(), \$\tilde{\mathcal{T}}(x: X, y: Y(x))\$ are mode types (objects of \$\mathcal{D}\$) obtained as pullbacks of \$\tilde{\mathcal{T}}\$ to these elements.
- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that's well-defined in the context of the previous variables.

 $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)), (Z:\mathfrak{T}(x:X,y:Y(x)))$

- (), (x : X), and (x : X, y : Y(x)) are elements of ℭ, represented by "mini-contexts".
 - () : \mathfrak{C} is in the empty mode context.
 - $(x : X) : \mathfrak{C}$ is in the mode context $(X : \mathfrak{T}())$.
 - (x:X, y:Y(x)) in mode context $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)).$
- \$\tilde{\mathcal{T}}(), \$\tilde{\mathcal{T}}(x: X, y: Y(x))\$ are mode types (objects of \$\mathcal{D}\$) obtained as pullbacks of \$\tilde{\mathcal{T}}\$ to these elements.
- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that's well-defined in the context of the previous variables.

 $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)), (Z:\mathfrak{T}(x:X,y:Y(x)))$

- (), (x : X), and (x : X, y : Y(x)) are elements of C, represented by "mini-contexts".
 - () : \mathfrak{C} is in the empty mode context.
 - $(x : X) : \mathfrak{C}$ is in the mode context $(X : \mathfrak{T}())$.
 - (x:X, y:Y(x)) in mode context $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)).$
- \$\mathcal{T}\$(), \$\mathcal{T}\$(x : X), and \$\mathcal{T}\$(x : X, y : Y(x)) are mode types (objects of \$\mathcal{D}\$) obtained as pullbacks of \$\mathcal{T}\$ to these elements.
- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that's well-defined in the context of the previous variables.

 $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)), (Z:\mathfrak{T}(x:X,y:Y(x)))$

- (), (x : X), and (x : X, y : Y(x)) are elements of C, represented by "mini-contexts".
 - () : \mathfrak{C} is in the empty mode context.
 - $(x : X) : \mathfrak{C}$ is in the mode context $(X : \mathfrak{T}())$.
 - (x:X, y:Y(x)) in mode context $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)).$
- \$\tilde{\mathcal{T}}(), \$\tilde{\mathcal{T}}(x: X, y: Y(x))\$ are mode types (objects of \$\mathcal{D}\$) obtained as pullbacks of \$\tilde{\mathcal{T}}\$ to these elements.
- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that's well-defined in the context of the previous variables.

 $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)), (Z:\mathfrak{T}(x:X,y:Y(x)))$

- (), (x : X), and (x : X, y : Y(x)) are elements of C, represented by "mini-contexts".
 - () : \mathfrak{C} is in the empty mode context.
 - $(x : X) : \mathfrak{C}$ is in the mode context $(X : \mathfrak{T}())$.
 - (x:X, y:Y(x)) in mode context $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)).$
- \$\mathcal{T}\$(), \$\mathcal{T}\$(x : X), and \$\mathcal{T}\$(x : X, y : Y(x)) are mode types (objects of \$\mathcal{D}\$) obtained as pullbacks of \$\mathcal{T}\$ to these elements.
- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that's well-defined in the context of the previous variables.

 $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)), (Z:\mathfrak{T}(x:X,y:Y(x)))$

- (), (x : X), and (x : X, y : Y(x)) are elements of C, represented by "mini-contexts".
 - () : \mathfrak{C} is in the empty mode context.
 - $(x : X) : \mathfrak{C}$ is in the mode context $(X : \mathfrak{T}())$.
 - (x: X, y: Y(x)) in mode context $(X: \mathfrak{T}()), (Y: \mathfrak{T}(x: X)).$
- \$\mathcal{T}\$(), \$\mathcal{T}\$(x : X), and \$\mathcal{T}\$(x : X, y : Y(x)) are mode types (objects of \$\mathcal{D}\$) obtained as pullbacks of \$\mathcal{T}\$ to these elements.
- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that's well-defined in the context of the previous variables.

Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]

Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]
[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]

[cf. Tsementzis-Weaver, Finite Inverse Categories as Signatures]

[cf. Tsementzis–Weaver, Finite Inverse Categories as Signatures]

[cf. Tsementzis-Weaver, Finite Inverse Categories as Signatures]

[cf. Tsementzis-Weaver, Finite Inverse Categories as Signatures]

Semantically, we have a fibration of comprehension 2-categories over $\mathcal{D} \to \mathcal{M}^{\to}$. Syntactically, we have judgments-over-judgments:

$$(a: A), (b: B(a)) \vdash C(a, b)$$
 type
 $(X:\mathfrak{T}()), (Y:\mathfrak{T}(x:X)) \vdash \mathfrak{T}(x:X, y: Y(x))$ mode

$$(a: A), (b: B) \vdash C(a, b)$$
 type
 $(X:\mathfrak{T}()), (Y:\mathfrak{T}()) \vdash \mathfrak{T}(x:X,y:Y)$ mode

 $(a: A), (b: B(a)) \vdash C(a)$ $(X:\mathfrak{I}()), (Y:\mathfrak{I}(x:X)) \vdash \mathfrak{I}(x:X) \mod e$

Now suppose we have two comprehension objects $\mathfrak{T}_{\mathfrak{s}} \to \mathfrak{C}_{\mathfrak{s}}^{\to}$ and $\mathfrak{T}_{\mathfrak{e}} \to \mathfrak{C}_{\mathfrak{e}}^{\to}$, with a "comprehension morphism" consisting of terms

$$(\Gamma : \mathfrak{C}_{\mathfrak{s}}) \vdash \mathfrak{p}\Gamma : \mathfrak{C}_{\mathfrak{e}}$$

 $(\Gamma : \mathfrak{C}_{\mathfrak{s}}), (X : \mathfrak{T}_{\mathfrak{s}}(\Gamma)) \vdash \mathfrak{p}X : \mathfrak{T}_{\mathfrak{e}}(\mathfrak{p}\Gamma)$

Now suppose we have two comprehension objects $\mathfrak{T}_{\mathfrak{s}} \to \mathfrak{C}_{\mathfrak{s}}^{\to}$ and $\mathfrak{T}_{\mathfrak{e}} \to \mathfrak{C}_{\mathfrak{e}}^{\to}$, with a "comprehension morphism" consisting of terms

$$(\Gamma : \mathfrak{C}_{\mathfrak{s}}) \vdash \mathfrak{p}\Gamma : \mathfrak{C}_{\mathfrak{e}}$$

 $(\Gamma : \mathfrak{C}_{\mathfrak{s}}), (X : \mathfrak{T}_{\mathfrak{s}}(\Gamma)) \vdash \mathfrak{p}X : \mathfrak{T}_{\mathfrak{e}}(\mathfrak{p}\Gamma)$

Now suppose we have two comprehension objects $\mathfrak{T}_{\mathfrak{s}} \to \mathfrak{C}_{\mathfrak{s}}^{\to}$ and $\mathfrak{T}_{\mathfrak{e}} \to \mathfrak{C}_{\mathfrak{e}}^{\to}$, with a "comprehension morphism" consisting of terms

$$(\Gamma : \mathfrak{C}_{\mathfrak{s}}) \vdash \mathfrak{p}\Gamma : \mathfrak{C}_{\mathfrak{e}}$$

 $(\Gamma : \mathfrak{C}_{\mathfrak{s}}), (X : \mathfrak{T}_{\mathfrak{s}}(\Gamma)) \vdash \mathfrak{p}X : \mathfrak{T}_{\mathfrak{e}}(\mathfrak{p}\Gamma)$

Now suppose we have two comprehension objects $\mathfrak{T}_{\mathfrak{s}} \to \mathfrak{C}_{\mathfrak{s}}^{\to}$ and $\mathfrak{T}_{\mathfrak{e}} \to \mathfrak{C}_{\mathfrak{e}}^{\to}$, with a "comprehension morphism" consisting of terms

$$ig(\mathsf{\Gamma}:\mathfrak{C}_\mathfrak{s}ig) \vdash \mathfrak{p}\mathsf{\Gamma}:\mathfrak{C}_\mathfrak{e}\ (\mathsf{\Gamma}:\mathfrak{C}_\mathfrak{s}ig), ig(X:\mathfrak{T}_\mathfrak{s}(\mathsf{\Gamma})ig) \vdash \mathfrak{p}X:\mathfrak{T}_\mathfrak{e}(\mathfrak{p}\mathsf{\Gamma})$$

Now suppose we have two comprehension objects $\mathfrak{T}_{\mathfrak{s}} \to \mathfrak{C}_{\mathfrak{s}}^{\to}$ and $\mathfrak{T}_{\mathfrak{e}} \to \mathfrak{C}_{\mathfrak{e}}^{\to}$, with a "comprehension morphism" consisting of terms

$$(\Gamma : \mathfrak{C}_{\mathfrak{s}}) \vdash \mathfrak{p}\Gamma : \mathfrak{C}_{\mathfrak{e}}$$

 $(\Gamma : \mathfrak{C}_{\mathfrak{s}}), (X : \mathfrak{T}_{\mathfrak{s}}(\Gamma)) \vdash \mathfrak{p}X : \mathfrak{T}_{\mathfrak{e}}(\mathfrak{p}\Gamma)$

$$(x:X)_{\mathfrak{s}}, (a:A(x))_{\mathfrak{e}} \vdash B(x) \operatorname{type}_{\mathfrak{s}}$$

 $(X:\mathfrak{T}_{\mathfrak{s}}()), (Y:\mathfrak{T}_{\mathfrak{e}}(x:\mathfrak{p}(X))) \vdash \mathfrak{T}_{\mathfrak{s}}(x:X) \operatorname{mode}$

The 2-dimensional aspect of 2-DTT

 \mathcal{M} and \mathcal{D} are 2-categories, so we have 2-cell judgments. These include variable-for-variable substitutions on mini-contexts:

$$ig(X:\mathfrak{T}()ig)\mid (x:X)\vDash (x,x):(x_1:X,x_2:X):\mathfrak{C}$$

as well as generating 2-cells between generating mode morphisms:

Suppose comprehension objects labeled $\mathfrak{m}, \mathfrak{n}, \mathfrak{e}$ with morphisms

$$\mathfrak{p}:\mathfrak{m}\to\mathfrak{n}$$
 $\mathfrak{q}:\mathfrak{n}\to\mathfrak{e}$ $\mathfrak{r}:\mathfrak{m}\to\mathfrak{e}$

and a 2-cell $\mathfrak{u} : \mathfrak{r} \Rightarrow \mathfrak{qp}$. Then we have a mode context

 $(X:\mathfrak{T}_{\mathfrak{m}}()), (Y:\mathfrak{T}_{\mathfrak{n}}(x:\mathfrak{p}X)), (Z:\mathfrak{T}_{\mathfrak{e}}(x:\mathfrak{e}X, y:\mathfrak{q}Y(\mathfrak{u}(x))))$

Note how the type of Z typechecks: $x : \mathfrak{r}X$, so $\mathfrak{u}(x) : \mathfrak{qp}(X)$ which is what $\mathfrak{q}Y$ depends on.

Modal dependency, semantically

$$\begin{array}{lll} (a:A)_{\mathfrak{m}}, & (b:B(a))_{\mathfrak{n}} & \vdash & C(a,b) \text{type}_{\mathfrak{e}} \\ (X:\mathfrak{T}_{\mathfrak{m}}()), & (Y:\mathfrak{T}_{\mathfrak{n}}(x:\mathfrak{p}X)) & \vdash & (Z:\mathfrak{T}_{\mathfrak{e}}(x:\mathfrak{r}X,y:\mathfrak{q}Y(\mathfrak{u}(x)))) \text{ mode} \end{array}$$

In general, what we get semantically is the oplax limit of an oplax diagram of comprehension categories.

- All kinds of "type doctrines", including geometric morphisms, modalities, non-cartesian monoidal structures, and all kinds of dependency, can be expressed syntactically as "dependent type 2-theories".
- 2 Each such 2-theory generates a class of 1-theories that specialize to "dependent modal type theories" for describing structures on, and diagrams of, $(\infty, 1)$ -toposes.
- We can hope to prove metatheorems like canonicity and initiality once and for all, and then simply specialize them to every new 2-theory.