UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

PH.D. COMPREHENSIVE EXAMINATION (ALGEBRA)

October 2021

3 hours

Instructions: Answer completely as many questions as you can. More credit may be given for a complete solution than for several partial solutions. Do not forget to justify your answers.

Linear Algebra.

- (1) Let V be a finite-dimensional complex vector space with a Hermitian inner product. Let $T: V \to V$ be a normal linear transformation. Show T and TT^* have the same rank.
- (2) Let A be an $n \times n$ matrix with coefficients in \mathbb{C} of rank one. Show $\det(A + I) = \operatorname{tr}(A) + 1$.

Rings and modules.

- (3) Let $R = \mathbb{Z}[T, T^{-1}]$ be the ring of Laurent polynomials in one variable.
 - (a) Show the units in R are $R^{\times} = \{ \pm T^n \mid n \in \mathbb{Z} \}.$
 - (b) Find all ring homomorphisms $f: R \to R$ satisfying f(1) = 1.
- (4) Let M and N be two finitely generated modules over a Noetherian ring R. Let $\operatorname{Hom}_R(M, N)$ be the R-module of R-module homomorphisms $M \to N$. Show $\operatorname{Hom}_R(M, N)$ is finitely generated.

Group theory.

- (5) Show the multiplicative group $(\mathbb{Z}/35)^{\times}$ is not cyclic. Find a pair of elements generating it.
- (6) Let G be a group. Recall that a subgroup $H \subseteq G$ is characteristic iff $\alpha(H) \subseteq H$ for every automorphism $\alpha: G \to G$. Show the center Z(G) and derived subgroup [G, G] are both characteristic.

Field theory.

- (7) Determine the number of irreducible quadratic polynomials in $\mathbb{F}_5[x]$.
- (8) Construct a monic polynomial $f \in \mathbb{Z}[x]$ satisfying:

$$f \equiv \begin{cases} (\text{irreducible cubic}) & \mod 2\\ (\text{irreducible quadratic})(\text{linear}) & \mod 3 \end{cases}$$

in the rings $\mathbb{F}_2[x]$ and $\mathbb{F}_3[x]$ respectively. Determine the Galois group of f.

Do not forget to justify your answers!