PhD Comprehensive Exam (Algebra) Department of Mathematics June 2021

Instructions:

- 1. You have 3 hours to complete the exam.
- 2. Little partial credit will be given. Aim for complete solutions.
- 3. You should attempt at least one question from each topic.
- 4. Justify all your answers.

Linear Algebra

- 1. Let A be a square matrix over \mathbb{C} such that $\bar{A}^T = A$. Prove that the eigenvalues of A are real.
- 2. Consider the linear operator $T: \mathbb{C}^3 \to \mathbb{C}^3$ given by multiplication by the matrix

$$\begin{bmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -12 & 18 & 5 \end{bmatrix}.$$

Recall that a subspace $W \subseteq \mathbb{C}^3$ is *T*-invariant if $T(W) \subseteq W$. How many *T*-invariant subspaces of \mathbb{C}^3 are there? Remember you must prove that your answer is correct.

Groups

3. Let A be a finite abelian group of order 480. Consider the map

$$\phi: A \to A \qquad \phi(x) = 4x$$

What possible values could $|\operatorname{coker}(\phi)|$ take?

4. Let G be a finite group with normal subgroup N. Prove or disprove, G is isomorphic to a semidirect product of N and G/N.

Rings and Modules

5. Let R be a PID and $\mathbb{R}^n = M$ a free module of finite rank over R. We consider a bilinear form b on M. In other words we are given a function

$$b:M\times M\to R$$

satisfying the following rules

- 1. $b(x, -): M \to M$ is a homomorphism of *R*-modules for all $x \in M$.
- 2. $b(-,r): M \to M$ is a homomorphism of *R*-modules for all $y \in M$.

Consider $M^{\perp} = \{x \in M \mid b(x, y) = 0 \text{ for all } y \in M\}$. Show that $M^{\perp} \oplus N \cong M$ for some submodule N of M.

6. Let I be the ideal in $\mathbb{Z}[X]$ generated by $X^3 + X + 1$ and 3. Let $R = \mathbb{Z}[X]/I$. Consider the abelian group R^{\times} , that is the group of units in R. Decompose R^{\times} as direct product of cyclic groups. That is find n_i so that

$$R^{\times} \cong \mathbb{Z}/n_1 \times \mathbb{Z}/n_2 \times \ldots \times \mathbb{Z}/n_k.$$

Fields

- 7. Let p be a prime and let K be a field of order p^{100} . Exactly how many subfields does K have? Remember to prove your answer.
- 8. Consider the polynomial $f = X^3 2tX + t \in \mathbb{C}(t)[X]$, where $\mathbb{C}(t)$ is the field of fractions of $\mathbb{C}[t]$. What is the Galois group of f over $\mathbb{C}(t)$?