THE UNIVERSITY OF WESTERN ONTARIO
 DEPARTMENT OF MATHEMATICS

Ph.D. Comprehensive Examination (Analysis)

May 17, 2022. Duration: 3 hours
Instructions: Answer as many questions as you can. Give complete justifications. You should aim to solve 5 problems completely and correctly rather than attempting every problem. Skim the questions at the start, so you can focus on the ones you feel most confident about.

1. Let $C^{1}[a, b]$ denote the set of continuously differentiable functions f on the interval $[a, b]$ such that $f(a)=y_{1}, f(b)=y_{2}$. Consider the function $S: C^{1}[a, b] \rightarrow \mathbb{R}$ defined as

$$
S(f)=\int_{a}^{b}\left|f^{\prime}(x)\right|^{2} d x
$$

Find the minimum value of S. (Hint: Solve the probem first for $y_{1}=y_{2}=0$.)
2. Show that the integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ is convergent, but $\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x$ is divergent.
3. Compute the line integral $\int_{C} F \cdot d r$, where C is any smooth clockwise oriented simple closed curve in the plane containing the origin in its interior, and the vector field F is given by

$$
F(x, y)=\frac{2 x y \mathbf{i}+\left(y^{2}-x^{2}\right) \mathbf{j}}{\left(x^{2}+y^{2}\right)^{2}}
$$

(Hint: Green's theorem might be useful here).
4. It is known that for smooth real valued functions f on the interval $[0,1]$ such that $\int_{0}^{1} f(x) d x=0$, there is a constant C such that

$$
\int_{0}^{1} f(x)^{2} d x \leq C \int_{0}^{1} f^{\prime}(x)^{2} d x
$$

Assuming this fact, show that $C \geq \frac{1}{4 \pi^{2}}$.
5. Find the maximum of $\left|z^{2}-3 z+2\right|$ on the closed unit disc.
6. Evaluate

$$
\int_{R} \frac{d z}{\sin (z)}
$$

where R is the rectangle with corners $(-1,-1),(7,-1),(7,1)$, and $(-1,1)$, oriented counterclockwise.
7. Prove that if $\left\{u_{n}\right\}$ is a sequence of functions analytic in a domain Ω and such that $\sum_{n} u_{n}(z)$ converges uniformly on Ω, then $f(z):=\sum_{n} u_{n}(z)$ is analytic in Ω.
8. Let f be a holomorphic function defined in an open set containing 0 . Suppose $f(0)=0$ and $f^{\prime}(0)=0$. The inverse function theorem states that f has an inverse g defined near 0 . Show that there is an open set U of 0 and a constant $\epsilon>0$ such that, for all $w \in U$, we can express g as

$$
g(w)=\frac{1}{2 \pi i} \int_{|z|=\epsilon} \frac{z f^{\prime}(z)}{z-w} d z
$$

