THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS Ph.D. Comprehensive Examination (Analysis)

May 17, 2022. Duration: 3 hours

Instructions: Answer as many questions as you can. Give complete justifications. You should aim to solve 5 problems completely and correctly rather than attempting every problem. Skim the questions at the start, so you can focus on the ones you feel most confident about.

1. Let $C^1[a, b]$ denote the set of continuously differentiable functions f on the interval [a, b] such that $f(a) = y_1$, $f(b) = y_2$. Consider the function $S : C^1[a, b] \to \mathbb{R}$ defined as

$$S(f) = \int_a^b |f'(x)|^2 dx.$$

Find the minimum value of S. (Hint: Solve the probem first for $y_1 = y_2 = 0$.)

- 2. Show that the integral $\int_0^\infty \frac{\sin x}{x} dx$ is convergent, but $\int_0^\infty |\frac{\sin x}{x}| dx$ is divergent.
- 3. Compute the line integral $\int_C F \cdot dr$, where C is any smooth clockwise oriented simple closed curve in the plane containing the origin in its interior, and the vector field F is given by

$$F(x,y) = \frac{2xy\,\mathbf{i} + (y^2 - x^2)\,\mathbf{j}}{(x^2 + y^2)^2}$$

(Hint: Green's theorem might be useful here).

4. It is known that for smooth real valued functions f on the interval [0,1] such that $\int_0^1 f(x)dx = 0$, there is a constant C such that

$$\int_0^1 f(x)^2 dx \le C \int_0^1 f'(x)^2 dx.$$

Assuming this fact, show that $C \ge \frac{1}{4\pi^2}$.

- 5. Find the maximum of $|z^2 3z + 2|$ on the closed unit disc.
- 6. Evaluate

$$\int_{R} \frac{dz}{\sin(z)}$$

where R is the rectangle with corners (-1, -1), (7, -1), (7, 1), and (-1, 1), oriented counterclockwise.

- 7. Prove that if $\{u_n\}$ is a sequence of functions analytic in a domain Ω and such that $\sum_n u_n(z)$ converges uniformly on Ω , then $f(z) := \sum_n u_n(z)$ is analytic in Ω .
- 8. Let f be a holomorphic function defined in an open set containing 0. Suppose f(0) = 0and f'(0) = 0. The inverse function theorem states that f has an inverse g defined near 0. Show that there is an open set U of 0 and a constant $\epsilon > 0$ such that, for all $w \in U$, we can express g as

$$g(w) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{zf'(z)}{z-w} \, dz$$