PhD Comprehensive Exam (Algebra) Department of Mathematics 5 October 2023, 9:00 am - 12:00 pm in MC 108

Instructions:

- 1. You have 3 hours to complete the exam.
- 2. Little partial credit will be given. Aim for complete solutions.
- 3. You should attempt at least one question from each topic.
- 4. Justify all your answers.

Linear Algebra

- 1. Let V be a finite-dimensional vector space over some field F. Define ϕ : End(V) \rightarrow End(V) by $\phi(f) = fg gf$, where $g \in$ End(V) is fixed. Show that if g is nilpotent, then so is ϕ .
- 2. Let f be an endomorphism of a finite-dimensional vector space V over some field F. Assume that its minimal polynomial is t^5 and that its kernel is 3-dimensional. What are the possible values of $n = \dim V$?

Groups

- 3. Let G be a non-Abelian group of order p^3 , where p is a prime. Prove that Z(G) = G', where Z(G) denotes the centre of G and G' denotes its commutator subgroup.
- 4. Let p < q be primes. Prove that there exists a non-Abelian group of order pq^2 if and only if p divides $q^2 1$.

Rings and Modules

- 5. Prove that polynomials $f(x), g(x) \in \mathbb{Z}[x]$ are relatively prime in $\mathbb{Q}[x]$ if and only if the ideal they generate in $\mathbb{Z}[x]$ contains a nonzero integer.
- 6. Let A be a (possibly infinite) generating set of a module M over a ring R with 1. First, prove that A contains a maximal subset of R-linearly independent elements. Then deduce that, in the case when R is a field, A contains a (possibly infinite) basis for the free module M. Give an example to show that the assumption that R is a field cannot be omitted here.

Fields

- 7. Let E be the splitting field of $f(X) = X^4 + 3X^2 + 4 \in \mathbb{F}_5[X]$. Determine the Galois group of E/\mathbb{F}_5 .
- 8. (a) Factor $X^{12} 1 \in \mathbb{Q}[X]$ into irreducibles (explicitly!).
 - (b) Assume that $n \ge 3$ is odd. Show that $\Phi_{2n}(X) = \Phi_n(-X)$, where $\Phi_n(X)$ is the *n*-th cyclotomic polynomial.