THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF MATHEMATICS

Ph.D. Comprehensive Examination (Analysis)

May 16, 20233 hours
Instructions: Answer as many questions as you can. Give complete justifications. Aim for complete solutions (there will be little or no partial credit). You should attempt at least two complex analysis questions and at least two real analysis questions.

1. Recall that a map of the form $f(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{C}$, is called a linear-fractional transformation. Show that any linear-fractional transformation maps circles to circles. (We treat lines as circles of infinite radius.)
2. Let $f(z)$ be a holomorphic function in a domain $D \subset \mathbb{C}$, and $z \in D$. Prove that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z+r e^{i \theta}\right) d \theta
$$

where $r>0$ is sufficiently small.
3. Let $f(z)$ be an entire function (holomorphic on \mathbb{C}) and satisfies $f(z+1)=f(z)$ and $f(z+i)=f(z)$ for all $z \in \mathbb{C}$. Prove that $f=$ const.
4. Compute the integral

$$
\int_{|z+i|=3 / 2} \frac{\sin (1 / z)}{1+z^{2}} d z
$$

5. A point e in a convex set $C \subseteq \mathbb{R}^{n}$ is called extreme point if it cannot be represented as $e=(1-\lambda) x+\lambda y$ for some distinct $x, y \in C$ and $\lambda \in(0,1)$.

Let A be an $m \times n$ matrix with rank m and columns denoted by $A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$ and let $b \in \mathbb{R}^{m}$. Define the set $F:=\left\{x \in \mathbb{R}^{n} \mid A x=b, x_{i} \geq 0\right.$ for all $\left.i=1, \ldots, n\right\}$ and let $x^{*} \in F$.

Show that if x^{*} is an extreme point of F, then the set of columns $\left\{A_{j} \mid x_{j}^{*} \neq 0\right\}$ is linearly independent.
6. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a monotone decreasing function with

$$
\int_{0}^{\infty} f(x) d x<\infty
$$

Show that $\lim _{x \rightarrow \infty} x f(x)=0$.
7. Compute the integral

$$
\int_{0}^{\infty} \frac{\log (x)}{x^{2}+a^{2}} d x
$$

where $a>0$ is a constant.
8. Let $\{x(i, j): i, j \in \mathbb{N}\}$ be a doubly indexed set in a complete metric space (X, ρ), such that

$$
\rho(x(i, j), x(k, \ell)) \leq \min \left\{\max \left\{\frac{1}{i}, \frac{1}{k}\right\}, \max \left\{\frac{1}{j}, \frac{1}{\ell}\right\}\right\} .
$$

Prove that the iterated limits $\lim _{i \rightarrow \infty} \lim _{j \rightarrow \infty} x(i, j)$ and $\lim _{k \rightarrow \infty} \lim _{\ell \rightarrow \infty} x(k, \ell)$ exist and are equal.

