## The UNIVERSITY of WESTERN ONTARIO

## Applied Mathematics Ph.D. Comprehensive Examination: Part 1 <br> Date and time: 6 June 2022, 9:00am-12:00 Noon.

Answer all questions. A calculator is allowed, but no other aids.

## Calculus

1. (a) Write down or derive the Taylor series for $\sin x$ around $x=0$.
(b) Write down or derive the Taylor series for $\cos x$ around $x=0$.
(c) Hence, or otherwise, compute the limit

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)-x^{2}+x^{6} / 6}{x^{8}(\cos x-1)}
$$

Answer: (a) $\sin x=\sum(-1)^{n} x^{2 n+1} /(2 n+1)$ ! (b) $\cos x=\sum(-1)^{n} x^{2 n} /(2 n)$ !
(c) $\sin \left(x^{2}\right)-x^{2}+x^{6} / 6=x^{10} / 120+O\left(x^{12}\right)$ and $x^{8}(\cos x-1)=-x^{10} / 2+O\left(x^{12}\right)$. Limit $=-1 / 60$
2. Calculate the area between the curves $y_{1}=x^{3}+3 x^{2}-x+2$ and $y_{2}=x^{2}+2 x+2$.

Answer: Curves cross at $x=-3,0,1 . \int_{-3}^{0}\left(y_{1}-y_{2}\right) d x+\int_{0}^{1}\left(y_{2}-y_{1}\right) d x=45 / 4+7 / 12=71 / 6$.
3. A ladder must be carried around a corner joining two corridors. The corridors have widths $a$ and $b$. See the diagram below. What is the longest ladder that can be carried around the corner? You may approximate the ladder by a line, as shown.


Answer: (1) $L=\sqrt{a^{2}+x^{2}}+\sqrt{b^{2}+y^{2}}$ and $x / a=b / y$, so $L=(1+b / x) \sqrt{a^{2}+x^{2}}$. $L^{\prime}=0$ for $x=\left(a^{2} b\right)^{1 / 3}$. Then $L=\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}$.
(2) $L=a \sec \theta+b \csc \theta$, and $\tan ^{3} \theta=b / a$.
4. Evaluate the integral

$$
\int_{0}^{\infty} \int_{x^{2}}^{\infty} x e^{-y^{2}} d y d x
$$

Answer: Reverse limits: $\int_{0}^{\infty} x e^{-y^{2}} d y d x=\int_{0}^{\infty} \int_{0}^{\sqrt{y}} x d x e^{-y^{2}} d y=\int_{0}^{\infty}(y / 2) e^{-y^{2}} d y=1 / 4$. Linear Algebra
5. Consider the matrix

$$
Q=\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & -2 & 1 \\
2 & 1 & -2
\end{array}\right)
$$

(a) Prove that this is an orthogonal matrix (also called orthonormal).
(b) Explain and prove why an orthogonal matrix is said to represent a rotation.

Answer: $Q^{T} Q=I$. For any vector $v,\|Q v\|=(Q v)^{T} Q v=v^{T} Q^{T} Q v=\|v\|$ so length is unchanged.
6. (a) Calculate the determinant of the matrix

$$
A=\left(\begin{array}{cccc}
0 & 3 & 3 & 1 \\
1 & 1 & 0 & 2 \\
0 & 2 & 3 & 0 \\
3 & -1 & 0 & 2
\end{array}\right)
$$

(b) Given the results of the above calculation, describe the possible solutions for $x$ of a system of equations $A x=b$, where $b$ is a random $4 \times 1$ vector.
Answer: (a) $\operatorname{det} A=0$ (b) Either family of solutions or no solution depending on $b$. Specifically solutions for $\langle p, q, r, 3 q-4 p+4 r\rangle$.
The answer "no solution" is wrong.
7. Let $A$ be the matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)
$$

(a) Calculate the eigenvectors of $A$.
(b) Diagonalize $A$.
(c) Hence or otherwise calculate $A^{10}$.

Answer: $\operatorname{det}(A-\lambda I)=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}0-\lambda & -2 \\ 1 & 3-\lambda\end{array}\right)=(\lambda-1)(\lambda-2)^{2} . P=\left(\begin{array}{ccc}-2 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ $P^{-1}=\left(\begin{array}{ccc}-1 & 0 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 2\end{array}\right)$. Then $A^{10}=P\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{10} & 0 \\ 0 & 0 & 2^{10}\end{array}\right) P^{-1}=\left(\begin{array}{ccc}-1022 & 0 & -2046 \\ 1023 & 1024 & 1023 \\ 1023 & 0 & 2047\end{array}\right)$

## Ordinary Differential Equations

8. By making an appropriate transformation, find the general solution of the ODE

$$
x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}
$$

Answer: $y=x u$, so $(x u)^{\prime}=x u^{\prime}+u$ and $x u^{\prime}+u=1+u+u^{2} . \quad x u^{\prime}=1+u^{2}$. then $u^{\prime} /\left(1+u^{2}\right)=1 / x$. So $\arctan u=\ln x+C . u=\tan (\ln x+C)=\tan (\ln (K x))$, and $y=x u$.
9. Solve the initial value problem

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}-2 x=0 \\
& x(0)=1, \quad \dot{x}(0)=-2 .
\end{aligned}
$$

What are the implications of your solution for solving this problem numerically? (only a brief answer is required -2 lines maximum).
Answer: $x(t)=e^{-2 t}$. The other solution grows exponentially and will magnify numerical errors.
10. Solve the boundary-value problem

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x} & =6 e^{x} \\
y(0) & =0 \\
y(\ln 2) & =3
\end{aligned}
$$

Answer: Easiest: integrate equation: $\frac{d y}{d x}+2 y=6 e^{x}+$ c. $y(x)=2 e^{x}-(4 / 3) e^{-2 x}-2 / 3$.
11. Consider the equation

$$
y^{\prime}=y+2 y^{2}
$$

with initial condition $y(0)=1$. By differentiating the equation, or otherwise, obtain the Taylor series for the solution $y(x)$ around $x=0$. Calculate the first 4 terms of the series, i.e. out to and including the term $x^{3}$.

## Answer:

$$
\begin{aligned}
y^{\prime} & =y+2 y^{2} \\
y^{\prime \prime} & =y^{\prime}+4 y y^{\prime} \\
y^{\prime \prime \prime} & =y^{\prime \prime}+4 y^{\prime} y^{\prime}+4 y y^{\prime \prime}
\end{aligned}
$$

Thus $y(0)=1, y^{\prime}(0)=1+2=3, y^{\prime \prime}(0)=3+4(1)(3)=15, y^{\prime \prime \prime}(0)=15+4(9)+4(1) 15=111$. Therefore the Taylor series is

$$
y(x)=1+3 x+\frac{15}{2} x^{2}+\frac{37}{2} x^{3}+O\left(x^{4}\right)
$$

Note: the substitution $u=1 / y$ converts the equation to $u^{\prime}=-u-2$, giving the solution $y(x)=\frac{1}{3 e^{-x}-2}$, and this could be expanded to get the series.

## Numerical Methods

12. Given a set of data points $\left(x_{i}, y_{i}\right)$, with $x_{i} \neq x_{j}$ for all $i \neq j$, a polynomial $p(x)$ is to be fitted to the data.
(a) Define the terms monomial basis and Lagrange basis for the polynomial and data points.
(b) For the data $(1,4),(2,1),(3,-1)$, use the Lagrange basis to calculate the polynomial that fits the data.

Answer: $y=\frac{1}{2} x^{2}-\frac{9}{2} x+8$
13. Use Newton's method to solve the equation $x \tan x=1$, using a starting estimate of $x_{0}=1.1$.
(a) Calculate $x_{1}$ and $x_{2}$.
(b) What are the forward and backward errors associated with $x_{2}$ ?

Answer: $x_{1}=0.941167, x_{2}=0.8697589$. The forward absolute error is 0.009 and the backward error is: $x \tan x=1.03$.
14. Given the set of equations

$$
\begin{aligned}
2 x+3 y & =5, \\
x-y & =3, \\
3 x+2 y & =6,
\end{aligned}
$$

find an approximate solution using the theory of least squares.
Answer: $x=34 / 15, y=-1 / 15$.
15. Consider the function

$$
f(x)=\frac{1+2 x^{2}}{1-x}
$$

(a) Compute the first three terms of the Taylor series for $f(x)$ around $x=0$.
(b) Compute the remainder term $R_{2}(\xi, x)$.
(c) For the case $x=1 / 2$, obtain $\xi$ explicitly.

You may leave fractional powers symbolic. For example, a root such as $2^{1 / 4}$ can be left unevaluated.
Answer: (a) $1+x+3 x^{2}+R_{2}(\xi, x)$. (b) $R_{2}(\xi, x)=(1 / 3!) f^{(3)}(\xi)(x)^{3}=\frac{3 x^{3}}{(1-\xi)^{4}}$. (c) $R_{2}(\xi, 1 / 2)=$ $f(1 / 2)-1-1 / 2-3 / 4=3 / 4$. Therefore $1-\xi=2^{-1 / 4} \approx 0.16$

