The UNIVERSITY of WESTERN ONTARIO

Applied Mathematics Ph.D. Comprehensive Examination: Part 1 Date and time: 6 June 2022, 9:00am-12:00 Noon.

Answer all questions. A calculator is allowed, but no other aids.

Calculus

- 1. (a) Write down or derive the Taylor series for $\sin x$ around x = 0.
 - (b) Write down or derive the Taylor series for $\cos x$ around x = 0.
 - (c) Hence, or otherwise, compute the limit

$$\lim_{x \to 0} \frac{\sin(x^2) - x^2 + x^6/6}{x^8(\cos x - 1)}$$

Answer: (a) $\sin x = \sum (-1)^n x^{2n+1} / (2n+1)!$ (b) $\cos x = \sum (-1)^n x^{2n} / (2n)!$ (c) $\sin(x^2) - x^2 + x^6 / 6 = x^{10} / 120 + O(x^{12})$ and $x^8 (\cos x - 1) = -x^{10} / 2 + O(x^{12})$. Limit=-1/60

- 2. Calculate the area between the curves $y_1 = x^3 + 3x^2 x + 2$ and $y_2 = x^2 + 2x + 2$. **Answer:** Curves cross at x = -3, 0, 1. $\int_{-3}^{0} (y_1 - y_2) dx + \int_{0}^{1} (y_2 - y_1) dx = 45/4 + 7/12 = 71/6$.
- 3. A ladder must be carried around a corner joining two corridors. The corridors have widths *a* and *b*. See the diagram below. What is the longest ladder that can be carried around the corner? You may approximate the ladder by a line, as shown.

Answer: (1) $L = \sqrt{a^2 + x^2} + \sqrt{b^2 + y^2}$ and x/a = b/y, so $L = (1 + b/x)\sqrt{a^2 + x^2}$. L' = 0 for $x = (a^2b)^{1/3}$. Then $L = (a^{2/3} + b^{2/3})^{3/2}$. (2) $L = a \sec \theta + b \csc \theta$, and $\tan^3 \theta = b/a$.

4. Evaluate the integral

$$\int_0^\infty \int_{x^2}^\infty x e^{-y^2} \, dy \, dx \; .$$

Answer: Reverse limits: $\int_0^\infty x e^{-y^2} dy dx = \int_0^\infty \int_0^{\sqrt{y}} x dx \ e^{-y^2} dy = \int_0^\infty (y/2) e^{-y^2} dy = 1/4.$ Linear Algebra 5. Consider the matrix

$$Q = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2\\ 2 & -2 & 1\\ 2 & 1 & -2 \end{pmatrix}$$

- (a) Prove that this is an orthogonal matrix (also called orthonormal).
- (b) Explain and prove why an orthogonal matrix is said to represent a rotation.

Answer: $Q^T Q = I$. For any vector v, $||Qv|| = (Qv)^T Qv = v^T Q^T Qv = ||v||$ so length is unchanged.

6. (a) Calculate the determinant of the matrix

$$A = \begin{pmatrix} 0 & 3 & 3 & 1 \\ 1 & 1 & 0 & 2 \\ 0 & 2 & 3 & 0 \\ 3 & -1 & 0 & 2 \end{pmatrix}$$

.

(b) Given the results of the above calculation, describe the possible solutions for x of a system of equations Ax = b, where b is a random 4×1 vector.

Answer: (a) det A = 0 (b) Either family of solutions or no solution depending on b. Specifically solutions for $\langle p, q, r, 3q - 4p + 4r \rangle$. The answer "no solution" is wrong.

7. Let A be the matrix

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \ .$$

- (a) Calculate the eigenvectors of A.
- (b) Diagonalize A.
- (c) Hence or otherwise calculate A^{10} .

Answer:
$$\det(A - \lambda I) = (2 - \lambda) \det \begin{pmatrix} 0 - \lambda & -2 \\ 1 & 3 - \lambda \end{pmatrix} = (\lambda - 1)(\lambda - 2)^2$$
. $P = \begin{pmatrix} -2 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
 $P^{-1} = \begin{pmatrix} -1 & 0 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$. Then $A^{10} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{10} & 0 \\ 0 & 0 & 2^{10} \end{pmatrix} P^{-1} = \begin{pmatrix} -1022 & 0 & -2046 \\ 1023 & 1024 & 1023 \\ 1023 & 0 & 2047 \end{pmatrix}$

Ordinary Differential Equations

8. By making an appropriate transformation, find the general solution of the ODE

$$x^2 \frac{dy}{dx} = x^2 + xy + y^2 \; .$$

Answer: y = xu, so (xu)' = xu' + u and $xu' + u = 1 + u + u^2$. $xu' = 1 + u^2$. then $u'/(1+u^2) = 1/x$. So $\arctan u = \ln x + C$. $u = \tan(\ln x + C) = \tan(\ln(Kx))$, and y = xu.

9. Solve the initial value problem

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} - 2x = 0 ,$$

 $x(0) = 1 , \quad \dot{x}(0) = -2 .$

What are the implications of your solution for solving this problem numerically? (only a brief answer is required -2 lines maximum).

Answer: $x(t) = e^{-2t}$. The other solution grows exponentially and will magnify numerical errors.

10. Solve the boundary-value problem

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 6e^x ,$$

 $y(0) = 0 ,$
 $y(\ln 2) = 3 .$

Answer: Easiest: integrate equation: $\frac{dy}{dx} + 2y = 6e^x + c$. $y(x) = 2e^x - (4/3)e^{-2x} - 2/3$.

11. Consider the equation

$$y' = y + 2y^2 ,$$

with initial condition y(0) = 1. By differentiating the equation, or otherwise, obtain the Taylor series for the solution y(x) around x = 0. Calculate the first 4 terms of the series, i.e. out to and including the term x^3 .

Answer:

$$y' = y + 2y^{2}$$

 $y'' = y' + 4yy'$
 $y''' = y'' + 4y'y' + 4yy''$

Thus y(0) = 1, y'(0) = 1 + 2 = 3, y''(0) = 3 + 4(1)(3) = 15, y'''(0) = 15 + 4(9) + 4(1)15 = 111.Therefore the Taylor series is

$$y(x) = 1 + 3x + \frac{15}{2}x^2 + \frac{37}{2}x^3 + O(x^4)$$
.

Note: the substitution u = 1/y converts the equation to u' = -u - 2, giving the solution $y(x) = \frac{1}{3e^{-x}-2}$, and this could be expanded to get the series.

Numerical Methods

- 12. Given a set of data points (x_i, y_i) , with $x_i \neq x_j$ for all $i \neq j$, a polynomial p(x) is to be fitted to the data.
 - (a) Define the terms monomial basis and Lagrange basis for the polynomial and data points.
 - (b) For the data (1,4), (2,1), (3,-1), use the Lagrange basis to calculate the polynomial that fits the data.

Answer: $y = \frac{1}{2}x^2 - \frac{9}{2}x + 8$

- 13. Use Newton's method to solve the equation $x \tan x = 1$, using a starting estimate of $x_0 = 1.1$.
 - (a) Calculate x_1 and x_2 .
 - (b) What are the forward and backward errors associated with x_2 ?

Answer: $x_1 = 0.941167, x_2 = 0.8697589$. The forward absolute error is 0.009 and the backward error is: $x \tan x = 1.03$.

14. Given the set of equations

$$2x + 3y = 5$$
,
 $x - y = 3$,
 $3x + 2y = 6$,

find an approximate solution using the theory of least squares. **Answer:** x = 34/15, y = -1/15.

15. Consider the function

$$f(x) = \frac{1+2x^2}{1-x}$$

- (a) Compute the first three terms of the Taylor series for f(x) around x = 0.
- (b) Compute the remainder term $R_2(\xi, x)$.
- (c) For the case x = 1/2, obtain ξ explicitly.

You may leave fractional powers symbolic. For example, a root such as $2^{1/4}$ can be left unevaluated.

Answer: (a) $1+x+3x^2+R_2(\xi,x)$. (b) $R_2(\xi,x) = (1/3!)f^{(3)}(\xi)(x)^3 = \frac{3x^3}{(1-\xi)^4}$. (c) $R_2(\xi,1/2) = f(1/2) - 1 - 1/2 - 3/4 = 3/4$. Therefore $1 - \xi = 2^{-1/4} \approx 0.16$