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In mainstream finance, the price evolution of a risky asset is usually modeled as a

stochastic process defined on some probability space.
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In mainstream finance, the price evolution of a risky asset is usually modeled as a

stochastic process defined on some probability space.

However, the law of the stochastic process cannot be measured accurately by means

of statistical observation. We are facing model ambiguity.

Practically important consequence: model risk

Occam’s razor suggests: Try working without a probability space and with minimal

assumptions on price trajectories.
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1. Continuous-time finance without probability

Let X(t), 0 ≤ t ≤ T , be the discounted price of a risky asset. We assume for

simplicity that X is a continuous function.
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1. Continuous-time finance without probability

Let X(t), 0 ≤ t ≤ T , be the discounted price of a risky asset. We assume for

simplicity that X is a continuous function.

Trading strategy (ξ, η):

• ξ(t) shares of the risky asset

• η(t) shares of a riskless asset

at time t.

Discounted portfolio value at time t:

V (t) = ξ(t)X(t) + η(t)
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Key notion for continuous-time finance: self-financing strategy

If trading is only possible at times 0 = t0 < t1 < · · · < tN = T , a strategy (ξ, η) is

self-financing if and only if

(1) V (tk+1) = V (0) +
k∑
i=0

ξ(ti)
(
X(ti+1)−X(ti)

)
, k = 0, . . . , N − 1

How can we extend this definition to continuous trading?
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Key notion for continuous-time finance: self-financing strategy

If trading is only possible at times 0 = t0 < t1 < · · · < tN = T , a strategy (ξ, η) is

self-financing if and only if

(1) V (tk+1) = V (0) +
k∑
i=0

ξ(ti)
(
X(ti+1)−X(ti)

)
, k = 0, . . . , N − 1

Now let (Tn)n∈N be a refining sequence of partitions (i.e., T1 ⊂ T2 ⊂ · · · and

mesh(Tn)→ 0). Then (ξ, η) can be called self-financing (in continuous time) if we

may pass to the limit in (1). That is,

V (t) = V (0) +

∫ t

0

ξ(s) dX(s), 0 ≤ t ≤ T,

where the integral should be understood as the limit of the corresponding Riemann

sums: ∫ t

0

ξ(s) dX(s) = lim
n↑∞

∑
ti∈Tn, ti≤t

ξ(ti)
(
X(ti+1)−X(ti)

)
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A special strategy

The following is a version of an argument from Föllmer (2001)

Proposition 1. Let

ξ(t) = 2
(
X(t)−X(0)

)
0 ≤ t ≤ T.

Then
∫ t
0
ξ(t) dX(t) exists for all t as the limit of Riemann sums if and only if the

quadratic variation of X,

〈X〉(t) := lim
N↑∞

∑
ti∈TN , ti≤t

(
X(ti+1)−X(ti)

)2
,

exists for all t. In this case∫ t

0

ξ(s) dX(s) =
(
X(t)−X(0)

)2
− 〈X〉(t)
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A special strategy

The following is a version of an argument from Föllmer (2001)

Proposition 1. Let

ξ(t) = 2
(
X(t)−X(0)

)
0 ≤ t ≤ T.

Then
∫ t
0
ξ(t) dX(t) exists for all t as the limit of Riemann sums if and only if the

quadratic variation of X,

〈X〉(t) := lim
N↑∞

∑
ti∈TN , ti≤t

(
X(ti+1)−X(ti)

)2
,

exists for all t. In this case∫ t

0

ξ(s) dX(s) =
(
X(t)−X(0)

)2
− 〈X〉(t)
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We always have 〈X〉(t) = 0 if X is of bounded variation or Hölder continuous for

some exponent α > 1/2 (e.g., fractional Brownian motion with H > 1/2)

Otherwise, the quadratic variation 〈X〉 depends on the choice of (Tn).

Additional arbitrage arguments showing the necessity of a well-behaved quadratic

variation are due to Vovk (2012, 2015)
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If 〈X〉(t) exists and is continuous in t, Itô’s formula holds in the following strictly

pathwise sense (Föllmer 1981):

f(X(t))− f(X(0)) =

∫ t

0

f ′(X(s)) dX(s) +
1

2

∫ t

0

f ′′(X(s)) d〈X〉(s)

where ∫ t

0

f ′(X(s)) dX(s) = lim
n↑∞

∑
ti∈TN , ti≤t

f ′(X(ti))
(
X(ti+1)−X(ti)

)
is sometimes called the pathwise Itô integral or the Föllmer integral and∫ t
0
f ′′(X(s)) d〈X〉(s) is a standard Riemann–Stieltjes integral.

This formula was extended by Dupire (2009) and Cont & Fournié (2010) to a

functional context
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(Incomplete) list of financial applications of pathwise Itō calculus

• Strictly pathwise approach to Black–Scholes formula

(Bick & Willinger 1994)

• Robustness of hedging strategies and pricing formulas for exotic options (A.S. &

Stadje 2007, Cont & Riga 2016)

• Model-free replication of variance swaps (e.g., Davis, Ob lój & Raval (2014))

• CPPI strategies (A.S. 2014)

• Functional and pathwise extension of the Fernholz–Karatzas stochastic portfolio

theory (A.S., Speiser & Voloshchenko 2016)
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For instance: hedging and pricing options

Bick & Willinger (1994) proposed a pathwise approach to hedging an option with

payoff H = h(X(T )) for local volatility σ(t, x)
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For instance: hedging and pricing options

Bick & Willinger (1994) proposed a pathwise approach to hedging an option with

payoff H = h(X(T )) for local volatility σ(t, x)

For continuous h, solve the terminal-value problem

(2)


∂v

∂t
+

1

2
σ(t, x)2x2

∂2v

∂x2
= 0 in [0, T )× R+,

v(T, x) = h(x),

and let

ξ(t) :=
∂

∂x
v(t,X(t))

Then the pathwise Itô formula yields that

v(0, X(0)) +

∫ T

0

ξ(t) dX(t) = h(X(T ))

for any continuous trajectory X satisfying

〈X〉(t) =

∫ t

0

σ(s,X(s))2X(s)2 ds for all t.
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Extension to exotic options of the form

H = h(X(t1), . . . , X(tn))

via solving an iteration scheme of the PDE (2), or for fully path-dependent payoffs

H = h((X(t))t≤T )

via solving a PDE on path space (Peng & Wang 2016).

The preceding hedging argument leads to arbitrage-free pricing via establishing the

absence of arbitrage in a strictly pathwise sense (Alvarez, Ferrando & Olivares 2013,

A.S. & Voloshchenko 2016b)
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2. In search of a class of test integrators

Let’s fix the sequence of dyadic partitions of [0, 1],

Tn := {k2−n | k = 0, . . . , 2n}, n = 1, 2, . . .

Goal: Find a rich class of functions X ∈ C[0, 1] that admit a prescribed quadratic

variation along (Tn).

Of course one can take sample paths of Brownian motion or other continuous

semimartingales—as long as these sample paths do not belong to a certain nullset A.

But A is not explicit, and so it is not possible to tell whether a specific realization X

of Brownian motion does indeed admit the quadratic variation 〈X〉(t) = t along

(Tn)n∈N.

Moreover, this selection principle for functions X lets a probabilistic model enter

through the backdoor...
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2.1 A result of N. Gantert

Recall that the Faber–Schauder functions are defined as

e0,0(t) := (min{t, 1− t})+ em,k(t) := 2−m/2e0,0(2mt− k)
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Functions en,k for n = 0, n = 2, and n = 5
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Every function X ∈ C[0, 1] with X(0) = X(1) = 0 can be represented as

X =
∞∑
m=0

2m−1∑
k=0

θm,kem,k

where

θm,k = 2m/2
(

2X
(2k + 1

2m+1

)
−X

( k

2m

)
−X

(k + 1

2m

))
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Every function X ∈ C[0, 1] with X(0) = X(1) = 0 can be represented as

X =
∞∑
m=0

2m−1∑
k=0

θm,kem,k

where

θm,k = 2m/2
(

2X
(2k + 1

2m+1

)
−X

( k

2m

)
−X

(k + 1

2m

))

Proposition 2. (Gantert 1994)

〈X〉n(t) :=
∑

ti∈Tn, ti≤t

(
X(ti+1)−X(ti)

)2
can be computed for t = 1 as

〈X〉n(1) =
1

2n

n−1∑
m=0

2m−1∑
k=0

θ2m,k

13



2.2 Generalized Takagi functions with linear quadratic variation

By letting

X :=
{
X ∈ C[0, 1]

∣∣∣X =

∞∑
m=0

2m−1∑
k=0

θm,kem,k for coefficients θm,k ∈ {−1,+1}
}

(which is easily shown to be possible) we hence get a class of functions with

〈X〉(1) = 1 for all X ∈X .

As a matter of fact:

Proposition 3. Every X ∈X has quadratic variation 〈X〉(t) = t along (Tn).
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Similarities with sample paths of a Brownian bridge
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• Lévy–Ciesielski construction of the Brownian bridge

• Quadratic variation

• Nowhere differentiability (de Rham 1957, Billingsley 1982)

• Hausdorff dimension of the graph of X̂ is 3
2 (Ledrappier 1992)
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Link to the Takagi function and its generalizations

The specific function

X̂ :=
∞∑
m=0

2m−1∑
k=0

em,k

has some interesting properties.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

17



The function X̂ is closely related to the celebrated Takagi function,

X̂(1) =
∞∑
m=0

2m−1∑
k=0

2−m/2em,k

which was first found by Takagi (1903) and independently rediscovered many times

(e.g., by van der Waerden (1930), Hildebrandt (1933), Tambs–Lyche (1942), and

de Rham (1957))
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The maximum of X̂

Kahane (1959) showed that the maximum of the Takagi function is 3
2 . For X̂, we

need different arguments.

t2 t4 t5 t3 t1 = 1
2

M1

M2

M3

M4

M5

n = 1

n = 2

n = 3

n = 4

n = 5

Functions X̂n(t) :=

n−1∑
m=0

2m−1∑
k=0

em,k(t) and their maxima on [0, 12 ]
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The preceding plot suggests the recursions

tn+1 =
tn + tn−1

2
and Mn+1 =

Mn +Mn−1

2
+ 2−

n+2
2

These are solved by

tn =
1

3
(1− (−1)n2−n) and Mn =

1

3

(
2 +
√

2 + (−1)n+12−n(
√

2− 1)
)
− 2−n/2

By sending n ↑ ∞, we obtain:
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Theorem 1. The uniform maximum of functions in X is attained by X̂ and given

by

max
X∈X

max
t∈[0,1]

|X(t)| = max
t∈[0,1]

X̂(t) =
1

3
(2 +

√
2).

Maximal points are t = 1
3 and t = 2

3 .

0 1/3 1/2 2/3 1

1
3 (2 +

√
2)

1/2

1
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Corollary 1. The maximal uniform oscillation of functions in X is

max
X∈X

max
s,t∈[0,1]

|X(t)−X(s)| = 1

6
(5 + 4

√
2)

where the respective maxima are attained at s = 1/3, t = 5/6, and

X∗ := e0,0 +
∞∑
m=1

( 2m−1−1∑
k=0

em,k −
2m−1∑
`=2m−1

em,`

)

0 1/3 1/2 5/6

1
2 −

1
3 (2 +

√
2)

1
2

1
3 (2 +

√
2)
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Uniform moduli of continuity

Kahane (1959), Kôno (1987), Hata & Yamaguti (1984), and Allaart (2009) studied

moduli of continuity for (generalized) Takagi functions. However, their arguments

are not applicable to the functions in X .

Let

ω(h) :=
(

1 +
1√
2

)
h2b− log2 hc/2 +

1

3
(
√

8 + 2)2−b− log2 hc/2

Then ω(h) = O(
√
h) as h ↓ 0. More precisely,

lim inf
h↓0

ω(h)√
h

= 2

√
4

3
+
√

2 lim sup
h↓0

ω(h)√
h

=
1

6
(11 + 7

√
2)

0.02 0.04 0.06 0.08 0.10

4.70

4.75

4.80

4.85

4.90

23



Theorem 2 (Moduli of continuity).

(a) The function X̂ has ω as its modulus of continuity. More precisely,

lim sup
h↓0

max
0≤t≤1−h

|X̂(t+ h)− X̂(t)|
ω(h)

= 1

(b) An exact uniform modulus of continuity for functions in X is given by
√

2ω.

That is,

lim sup
h↓0

sup
X∈X

max
0≤t≤1−h

|X(t+ h)−X(t)|
ω(h)

=
√

2

Moreover, the above supremum over functions X ∈X is attained by the

function X∗ in the sense that

lim sup
h↓0

max
0≤t≤1−h

|X∗(t+ h)−X∗(t)|
ω(h)

=
√

2
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2−(n−1) tn

tn + hn
1
2 + 2−(n−1) 1

m ≥ 3

m = 2

m = 1

m = 0

The Faber–Schauder development of X∗ is plotted individually for generations

m ≤ n− 1 (with n = 3 here).

The aggregated development over all generations m ≥ n corresponds to a sequence

of rescaled functions X̂.

√
2ω(h) =

(√
2 + 1

)
h2b− log2 hc/2 +

2

3

(
2 +
√

2
)
2−b− log2 hc/2

linear part self-similar part
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Consequences

• Functions in X are uniformly Hölder continuous with exponent 1
2

• Functions in X have a finite 2-variation and hence can serve as integrators in

rough path theory

• X is a compact subset of C[0, 1]
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The linear hull of X is not a vector space

Proposition 4. Consider the function Y ∈X defined through θm,k = (−1)m. Then

lim
n↑∞
〈X̂ + Y 〉2n(t) =

4

3
t and lim

n↑∞
〈X̂ + Y 〉2n+1(t) =

8

3
t
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2.3 Vector spaces of functions with prescribed quadratic variation

The existence of a well-behaved covariation is needed, e.g., for describing

multivariate price trajectories. We therefore need vector spaces of functions with

prescribed quadratic variation. Here, we describe the constructions from Mishura &

A.S. (2016)
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Proposition 5. Let X ∈ C[0, 1] have Faber–Schauder coefficients θn,k. Then, for

t ∈
⋃
n Tn, the following conditions are equivalent.

(a) The quadratic variation 〈X〉(t) exists

(b) The following limit exists,

`(t) := lim
n↑∞

1

2n

b(2n−1)tc∑
k=0

θ2n,k

In this case, we furthermore have

〈X〉(t) = `(t)

Proof based on Proposition 2 and the Stolz–Cesàro theorem.
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Observe that

1

2n

b(2n−1)tc∑
k=0

θ2n,k

has the form of a Riemann sum for
∫ t
0
f(s)2 ds if we take

θn,k := f(k2−n)
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Proposition 6. If f is Riemann integrable on [0, 1], then

Xf :=
∞∑
m=0

2m−1∑
k=0

f(k2−n)em,k

is a continuous function with quadratic variation

〈Xf 〉(t) =

∫ t

0

f(s)2 ds

Thus, since the class R[0, 1] of all Riemann integrable functions on [0, 1] is an

algebra, the set {
Xf | f ∈ R[0, 1]

}
is a vector space
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dotted lines correspond to 〈Xf 〉7.
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Proposition 7. If f is Riemann integrable on [0, 1] and α > 0 is irrational and

fixed, then

Y α,f :=
∞∑
m=0

2m−1∑
k=0

f(αkmod 1)em,k

is a continuous function with quadratic variation

〈Y α,f 〉(t) = t

∫ 1

0

f(s)2 ds

Proof is based on Proposition 5 and Weyl’s equidistribution theorem, which implies

that

1

n

n−1∑
k=0

h
(
αkmod 1

)
−→

∫ 1

0

h(s) ds

for every Riemann integrable function h

Again, the class {
Y α,f | f ∈ R[0, 1]

}
is a vector space for each irrational α
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2.4 Constructing functions with local quadratic variation

Recall that for options hedging as in Bick & Willinger (1994) we need functions Z

satisfying

〈Z〉(t) =

∫ t

0

σ(s, Z(s))2 ds

First idea: apply a suitable time change to a function X with linear quadratic

variation 〈X〉(t) = t.

However, the time-changed function will not necessarily admit a quadratic variation

with respect to the original sequence of partitions, (Tn), but with respect to a new,

time-changed sequence.
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Instead, construct solutions to pathwise Itô differential equations of the form

dZ(t) = σ(t, Z(t)) dX(t) + b(t, Z(t)) dA(t)

where A is a continuous function of bounded variation (Mishura & A.S. 2016)

This can, e.g., be achieved by means of the Doss–Sussmann method combined with

the following associativity property of the Föllmer integral (A.S. 2014):∫ t

0

η(s) d
(∫ s

0

ξ(r) dX(r)
)

=

∫ t

0

η(s)ξ(s) dX(s)
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Conclusion

• Many financial problems can be formulated in a probability-free manner by

means of pathwise Itô calculus, thus addressing the issue of model risk

• In a pathwise formulation, the actually required modeling assumptions become

more transparent.

• Pathwise Itô calculus works not only for integrators that are sample paths of

semimartingales but also for many fractal functions

• Pathwise Itô calculus is more elementary than standard stochastic calculus and

thus a great means of teaching continuous-time finance
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Thank you
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