TUTTE
g LJLIE

INSTITUTE

INSTITUT

Topological Approaches to
Unsupervised Learning

Leland Mclnnes

© Government of Canada This presentation is the property of the Government of Canada. It shall not be altered, distributed beyond its intended audience, produced,
reproduced or published, in whole orin any substantial part thereor, without the express permission oEGSE.
Leland Mclnnes




TTTTTTTT
=f= TUTTE
L | BShims:

Unsupervised
Learning




INSTITUT
=N= TUTTE
. INSTITUTE

Unsupervised learning is the
machine learning task of inferring
structure in “unlabeled” data.
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m Dimension Reduction
m Clustering
m Anomaly Detection
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reduction
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Given high dimensional data
X={x1,...,xy} CR"find a low
dimensional representation of the
data - find the “latent” variables

that can describe the data.
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Our working example will be the
MNIST handwritten digits dataset.
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28x28 pixel images of
handwritten digits, converted to
784 dimensional vectors.
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Principal
Components
Analysis
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Dimension reduction

Principal Components Analysis

Project the data onto the
d-dimensional hyperplane that
minimizes the distance from
points to the plane.
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In practice this is solved by the top
d eigenvectors of the covariance
matrix of X.

Principal Components Analysis

Alternatively this is the top d
singular vectors of the SVD of X.

=
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Principal Components Analysis
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Principal Components Analysis

This captures global structures of
the data, but is a fundamentally
linear projection and cannot
capture
non-linear manifold structure.
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Laplacian Eigenmaps

Assuming the data lies on a
manifold, try to approximate the
Laplace-Beltrami operator
A =V -V of the manifold.
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Laplacian Eigenmaps

Select a kernel k(x,y), and
construct a graph with vertices X
and an edge (x;, x;) with weight
H(X,‘, Xj).
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Laplacian Eigenmaps

The (symmetric) normalized
Laplacian of the graph is a
discrete approximation of the
Laplace-Beltrami operator.

o F = = E DA
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Dimension reduction

Specifically, Belkin and Niyogi
(2002) demonstrate that, under
certain assumptions, in the limit
as the bandwidth of the kernel
tends to O and N tends to oo, the
normalized Laplcian converges to
the Laplace-Beltrami operator.

Laplacian Eigenmaps

Leland Mclnnes
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Laplacian Eigenmaps

A low dimensional embedding is
obtained by considering the top
eigenfunctions of the
Laplace-Beltrami operator.
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Laplacian Eigenmaps

This amounts to taking the top
eigenvectors of the normalized
Laplacian.
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Laplacian Eigenmaps
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Laplacian Eigenmaps

This understands manifold
structure, but requires strong
assumptions — specifically it

requires that the data be uniformly
distributed on the manifold.
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Uniform Manifold Approximation and Projection

Force the data to be
(approximately) uniformly
distributed by locally varying the
Riemannian metric tensor to make
it so.
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Uniform Manifold Approximation and Projection

That is, we use the uniform
distribution assumption to locally
approximate the volume form and

thence the metric tensor.
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Uniform Manifold Approximation and Projection

This can be thought of as locally
normalising distance relative to
the local neighborhood.

o F = = E DA
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Uniform Manifold Approximation and Projection

Since we have finite data X we
must locally approximate a
different Riemannian metric for
each point x;.
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Uniform Manifold Approximation and Projection

This provides us with N mutually
incompatible metric spaces which
we must somehow merge
together.
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Uniform Manifold Approximation and Projection

Since real world data has repeated
points we actually only have
pseudo-metric spaces.
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Dimension reduction

Uniform Manifold Approximation and Projection

Since the metric local to x; only
knows about distances from x; the
distances between other points
are not well defined...
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Uniform Manifold Approximation and Projection

...We can use
extended-pseudo-metric spaces
and set those distances to be oc.
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Uniform Manifold Approximation and Projection

But how does one glue together
different extended-pseudo-metric
spaces!?
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Uniform Manifold Approximation and Projection

Fortunately we can modify the

standard geometric realization

and singular set functors from
algebraic topology.

o F = = E DA
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Uniform Manifold Approximation and Projection

This gives a pair of adjoint functors
Real: EPMet = sFuzz :Sing

between extended-pseudo-metric
spaces and fuzzy simplicial sets.
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Uniform Manifold Approximation and Projection

Which means we can convert
each local metric space into a
fuzzy simplicial set and then take
a fuzzy union to get a single fuzzy
simplicial set representing the
data.
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Uniform Manifold Approximation and Projection

This can also be phrased in terms
of colimits or pushouts.
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Uniform Manifold Approximation and Projection

Now simply find a low
dimensional representation
Y={yi,...,yn} C R such that
Sing((Y, dgd)) approximates the
fuzzy simplicial set for X.
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Uniform Manifold Approximation and Projection

We can measure similarity of
fuzzy simplicial sets using fuzzy
set cross entropy.

o F = = E DA
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Uniform Manifold Approximation and Projection
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Clustering
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Given a dataset
X ={x1,...,xn} C R" find the
groups or clumps of data that are
similar.

o F = = E DA
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Not necessarily a well posed

problem — what constitutes a

clump? What do we mean by
similar?
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For our example dataset we’ll use
some synthetic “hard to cluster”
data in 2-dimensions
(so we can see what is going on).
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K-Means

o < =) «2» = 9ac
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K-Means

Assume we know how many
clusters we want to find (call it k).

Project the data onto a
k-dimensional hyperplane that
minimizes the distance from
points to the plane.

Leland Mclnnes
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One can think of this as finding k
centroids, or archetypes, and we
can instead minimize the distance
to the closest archetype.

K-Means

This is K-Means clustering.

=
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Computationally one randomly
assigns k cluster centroids and
then iterates:

Assign each data point to its closest centroid.

K-Means

Set the new centroid locations to be the
means of the data points assigned to them.

Repeat from step 1.

Leland Mclnnes
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K-Means

Leland Mclnnes

DA




INSTITUT
=N= TUTTE
. INSTITUTE

K-Means

This captures global structures of
the data, but is a fundamentally
linear projection and cannot
capture non-linear manifold
structure.
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K-Means

It also fails to deal well with noise
in the data.
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Spectral Clustering

It would be good to extract some
of the non-linear manifold
structure of the data when

clustering.
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Spectral Clustering

We can do this using Laplacian
Eigenmaps!
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Spectral Clustering

By using the eigenvectors of the
Laplacian of the appropriate
weighted graph we “unfold” the
manifold.
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Spectral Clustering

Once we have linearised the
manifold we can simply use
K-Means to cluster.
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Spectral Clustering

This is spectral clustering.
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Spectral Clustering

This does a better job, but still fails
to deal with noise well.
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co-UMAP
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co-UMAP

UMAP analysed the non-linear
manifold structure under a
uniform distribution assumption.

We can do the opposite!
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co-UMAP

Instead of normalising distances
with respect to the local
neighborhood we can exaggerate
distances with respect to the local
neighborhood.
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co-UMAP

This denormalising of distances
has the effect of downplaying
noise.

o F = = E DA
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co-UMAP

The same fuzzy simplicial set
theory then goes through, but now
instead of taking the fuzzy union
of the local fuzzy simplicial sets
we take the fuzzy intersection.




INSTITUT

== TUTTE

. INSTITUTE

co-UMAP

Categorically this is equivalent to
taking the pullback over all the
local fuzzy simplicial sets with

respect to the maximal fuzzy
simplicial set on the given
0-simplices.
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co-UMAP

The result is
a global fuzzy simplicial set
representing the data.

o F = = E DA
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co-UMAP

A little bit of symbol pushing...

S AP sFuzz

S: A% Sets” "

S:(Ix A)°P—-Sets

S I°P Sets™ "

S Iop sSet

=] (=)
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co-UMAP

TopP S

sSet

0

Sets
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co-UMAP

The composite functor my o S
provides a fuzzy set of connected
components.

o F = = E DA
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We can make an explicit fuzzy set (A, u)
where A is the set of all connected
components at any membership strength
and

sup{i € (0,1] |[a € mpo S(i)} if|a| > m
pa) = .
0 otherwise

co-UMAP
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co-UMAP

This effectively prunes out clusters
that are “too small”.

o F = = E DA




INSTITUT

=l= TUTTE
iy LUTTE

INSTITUTE

co-UMAP

A simple procedure can then select out
clusters from this, leaving some points
unclustered as “noise”.

Fuzzy connected components

=
o

o = I
ES = @

Fuzzy set membership strength
o
%]

o
=

0 500 1000 1500 2000
Sorted point index
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Anomaly
Detection
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Anomaly detection is the task of
“finding points that don’t belong”.
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To determine if a point is
unexpected, we first need to build
a model of what we expect.

This has similarities to both
dimension reduction and
clustering.
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We will use the same test dataset
as for clustering.
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Models
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Gaussian Mixture Models

Suppose we want to model the
data as a mixture of k multivariate
Gaussian distributions.
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Anomaly Dtection

Gaussian Mixture Models

We can measure the “error” of a
given set of k Gaussians as the
negative log likelihood of seeing
the data under the distribution.
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Gaussian Mixture Models

We then optimize to find
parameters for k Gaussians that
minimize this error.




INSTITUT
== TUTTE
. INSTITUTE

Gaussian Mixture Models

We can then express how
anomalous a data point is as the
negative log likelihood of
observing that point.
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Gaussian Mixture Models

In other words: “how unlikely is
the data point under the model?”
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Gaussian Mixture Models
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Gaussian Mixture Models

This has a similar flavour to PCA
and K-Means, and suffers from
some of the same problems.
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Gaussian Mixture Models

Gaussians can’t follow non-linear
manifold structure well.

Sufficient noise can corrupt the fit.
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Local Outlier Factor
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Local Outlier Factor

To better follow the manifold we
need a non-parametric estimate of
density.
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Local Outlier Factor

The reciprocal of the distance to
the k' nearest neighbor provides
an approximate density.




INSTITUT

=l= TUTTE
pllg [UTIE

INSTITUTE

Local Outlier Factor

An anomaly is then a point that
has signficantly different density
than that of its nearest neighbors.




INSTITUT
=N= TUTTE
. INSTITUTE

Local Outlier Factor

This provides the intuition for the
Local Outlier Factor.
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Local Outlier Factor
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Local Outlier Factor

This is certainly better, but is
heuristic, and scores are not as

easily interpretable as one might
like.
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Dual co-UMAP
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Dual co-UMAP

co-UMAP provided something
similar to a non-parametric
density estimate.
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Dual co-UMAP

Given input X we can run
co-UMAP and consider the fuzzy
set of connected components

(A, ).
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Dual co-UMAP

We can generate a density
estimate using the fuzzy set (X, v)
where

v(x) =sup{u(a) |a€ Aand x € a}
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Dual co-UMAP

We can simply take the fuzzy set
complement of this density
estimate!
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Dual co-UMAP

This is the fuzzy truth value that a
point is not in any connected
component.
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With a little bit of topology and

category theory for heavy lifting

we can build a single powerful

unified theory for unsupervised
learning!
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This is computationally tractable!
(O(Nlog N) average case performance)

Implementations are available!

https://github.com/lmcinnes/umap

https://github.com/scikit-learn-contrib/hdbscan

Leland Mclnnes
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