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1. Introduction

The Lambert W function is the multivalued inverse of the mapping W 7→ WeW .
The branches, denoted by Wk (k ∈ Z), are defined through the equations [11]

∀z ∈ C, Wk(z) exp(Wk(z)) = z , (1.1)

Wk(z) ∼ lnk z as ℜz → ∞ , (1.2)

where lnk z = ln z+2πik, and ln z is the principal branch of natural logarithm [14].
This paper considers only the principal branch k = 0, which is the branch that
maps the positive real axis onto itself, and therefore we shall usually abbreviate
W0 as W herein.
Many functions of W are members of a number of function classes, specifically,

the classes of Stieltjes functions, Pick functions and Bernstein functions, including
subclasses Thorin-Bernstein functions and complete Bernstein functions. This is
mainly due to the fact that W is a real symmetric function, in the terminology of
[5, p. 160] (see also [23, p. 155]), with positive values on the positive real line. The
mentioned classes are of particular interest because they admit certain integral
representations. A description of the classes can be found in a review paper [8]
and a recently published book [19]. In this paper we show that many functions
containing W are Stieltjes functions. Also, we extend the properties of the set of
Stieltjes functions in Sections 1.2 and 4. In addition, we give one more proof of the
fact [15] that W function is Bernstein. Moreover, we show that W is a complete
Bernstein function.
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The classes of Stieltjes functions and Bernstein functions are intimately con-
nected with the class of completely monotonic functions, which have many ap-
plications in different fields of science; a list of appropriate references is given in
[2]. Therefore we shall also study the complete monotonicity of some functions
containing W .
The properties and integral representations mentioned above have interesting

computational implications. For example, the fact that W (z)/z is a Stieltjes func-
tion means that the poles of successive Padé approximants interlace and all lie on
the negative real axis [5, p. 186] (here in the interval −∞ < z < −1/e). In addition,
some of the integral representations permit spectrally convergent quadratures for
numerical evaluation.

1.1. Properties of W

For convenience, we recall from [11] some properties of W that are used below.
The function is continuous from above on its branch cut B ⊂ R, defined to be the
interval B = (−∞,−1/e]. On the cut plane C\B, the function is holomorphic. Its
real values obey −1 ≤ W (x) < 0 for x ∈ [−1/e, 0), W (0) = 0 and W (x) > 0 for
x > 0. The imaginary part of W (t) has the following range of values for real t

ℑW (t) ∈ (0, π) for t ∈ (−∞,−1/e) and ℑW (t) = 0 otherwise. (1.3)

ℑW (t) → π as t → −∞. Also, ℑW (t) is continuously differentiable for t ̸= −1/e.
ℑW (z) and ℑz have the same sign in the cut plane C\R, or equivalently

ℑW (z)ℑz > 0 . (1.4)

W has near conjugate symmetry, meaning W (z) = W (z), except on the branch
cut B. The Taylor series near z = 0 is

W (z) =

∞∑
n=1

(−n)n−1 z
n

n!
(1.5)

with the radius of convergence 1/e, while the asymptotic behaviour of W (z) near
its branch point is given by

W (z) ∼ −1 +
√

2(ez + 1) z → −1/e . (1.6)

It follows from (1.5) and (1.2) that

W (z)/z → 1 as z → 0 , (1.7)

W (z)/z → 0 as z → ∞ . (1.8)

If z = t+ is and W (z) = u+ iv, then

eu(u cos v − v sin v) = t, eu(u sin v + v cos v) = s .

For the case of real z, i.e. s = 0, the functions u = u(t) and v = v(t) are defined by

u = −v cot v, (1.9)

t = t(v) = −v csc(v)e−v cot v . (1.10)
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For the case of purely imaginary z, i.e. t = 0, the functions u = u(s) and v = v(s)
obey

u = v tan v, (1.11)

s = s(v) = v sec(v)ev tan v . (1.12)

The derivative of W (z) is given by

W ′(z) =
W (z)

z(1 +W (z))
. (1.13)

Further, the following lemma will be used below.

Lemma 1.1 Function ℑW (−t) is nonnegative and bounded on the real line and
continuously differentiable for t ̸= 1/e. Specifically, it is zero for t ∈ (−∞, 1/e] and
a monotone increasing function for t ∈ (1/e,∞) so that ℑW (−t) → π as t → ∞.
Correspondingly, the derivative dℑW (−t)/dt is zero for t < 1/e and positive for
t > 1/e. In addition, dℑW (−t)/dt = o(1/t) as t → ∞.

Proof Owing to the above properties of function ℑW (t) (see (1.3)), the function
ℑW (−t) is nonnegative and bounded for real t and ℑW (−t) → π as t → ∞.
The function is also continuously differentiable everywhere except t = 1/e. We set
v(t) = ℑW (t) and compute the derivative v′(t); it is conveniently found by taking
the imaginary part of (1.13) and using (1.9)

v′(t) =
A(v(t))

t
, A(v) =

v

v2 + (1− v cot v)2
. (1.14)

Then the derivative dℑW (−t)/dt = A(v(−t))/t, which implies that it is zero for
t < 1/e and positive for t > 1/e as v(t) = 0 for t > −1/e and v(t) > 0 for t < −1/e.
It remains to justify the estimation of the derivative dℑW (−t)/dt at large t but
it immediately follows from the two facts that v(−t) → π as t → ∞ and that
A(v) → 0 as v → π. �

1.2. Stieltjes functions

We now review the properties of Stieltjes functions, again concentrating on results
that will be used in this paper. We must note at once that there exist several
different definitions of Stieltjes functions in the literature, and here we follow the
definition of Berg [8].

Definition 1.2 A function f : (0,∞) → R is called a Stieltjes function if it
admits a representation

f(x) = a+

∫ ∞

0

dσ(t)

x+ t
(x > 0), (1.15)

where a is a non-negative constant and σ is a positive measure on [0,∞) such that∫∞
0 (1 + t)−1dσ(t) < ∞.

A Stieltjes function is also called a Stieltjes transform [9, p. 127]. Except in
Section 2.3 below, the term Stieltjes function will here always refer to definition
(1.15).
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Theorem 1.3 The set S of all Stieltjes functions forms a convex cone [9, p. 127]
and possesses the following properties.

(i) f ∈ S \ {0} ⇒ 1
f(1/x) ∈ S

(ii) f ∈ S \ {0} ⇒ 1
xf(x) ∈ S

(iii) f ∈ S ⇒ f
cf+1 ∈ S (c ≥ 0)

(iv) f, g ∈ S \ {0} ⇒ f ◦ 1
g ∈ S

(v) f, g ∈ S \ {0} ⇒ 1
f◦g ∈ S

(vi) f, g ∈ S ⇒ fαg1−α ∈ S (0 ≤ α ≤ 1)
(vii) f ∈ S ⇒ fα ∈ S (0 ≤ α ≤ 1)

(viii) f ∈ S \ {0} ⇒ 1
x

(
f(0)
f(x) − 1

)
∈ S

(ix) f ∈ S \ {0} , limx→0+ xf(x) = c ≥ 0 ⇒ f(x)− c/x ∈ S
(x) f ∈ S ⇒ fα(0)− fα(1/x) ∈ S (0 ≤ α ≤ 1)

(xi) f ∈ S \ {0} ⇒ 1
x

(
1− f(x)

f(0)

)
∈ S

(xii) f ∈ S, limx→∞ f(x) = c > 0 ⇒ (cβ − fβ) ∈ S (−1 ≤ β ≤ 0)

In the above statements constants c and f(0) = limx→0+ f(x) are assumed to be
finite.

Proof Properties (i)-(vii) are listed in [8]; property (vi) is due to the fact that
the Stieltjes cone is logarithmically convex [7] and property (vii) is its immediate
consequence. Property (viii) is taken from [6, p. 406]. Property (ix) follows from
properties (ii) and (viii) in the following way: f ∈ S \ {0} ⇒ g(x) = 1/(xf(x)) ∈
S ⇒ (g(0)/g(x) − 1)/x = (xf(x)/c − 1)/x ∈ S ⇒ f(x) − c/x ∈ S. The last three
properties (x)–(xii) will be proved in Section 4. �

A Stieltjes function f has a holomorphic extension to the cut plane C\(−∞, 0]

satisfying f(z̄) = f(z) (see [7], [3] and [19, p. 11-12])

f(z) = a+

∫ ∞

0

dσ(t)

z + t
(|arg(z)| < π). (1.16)

In addition, a Stieltjes function f(z) in the cut plane C\(−∞, 0] can be represented
in the integral form [5, p.158]

f(z) =

∫ ∞

0

dΦ(u)

1 + uz
(|arg(z)| < π) , (1.17)

where Φ(u) is a bounded and non-decreasing function with finite real-valued mo-
ments

∫∞
0 tn dΦ(t) (n = 0, 1, 2, . . . ). The integral (1.17) is used in [5, Ch. 5] for a

study of Padé approximants to the Stieltjes functions; it is equivalent to the repre-
sentation (1.16) by virtue of the following observation. According to properties (i)
and (ii), if a function f ∈ S then f(1/x)/x ∈ S as well and hence the latter admits
representation (1.15)

1

x
f

(
1

x

)
= a+

∫ ∞

0

dσ(t)

x+ t
,

which after replacing x with 1/x gives

f(x) =
a

x
+

∫ ∞

0

dσ(t)

1 + xt
,
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where the first term can be included into the integral since a ≥ 0 and 1/x is a
Stieltjes function (see e.g. [8]). Finally, one considers the holomorphic extension of
the last integral to the cut plane C\(−∞, 0] in a way similar to the obtaining of
(1.16).
There are various kinds of necessary and sufficient conditions implying that a

function f is a Stieltjes function. Some of them are based on the classical results
established by R. Nevanlinna, F. Riesz, and Herglotz. Here we quote two such
theorems taken from [1, p. 93] and [8, Theorem 3.2].

Theorem 1.4 A function g(z) admits an integral representation in the upper half-
plane in the form

g(z) =

∫
R

dΦ(u)

u− z
(ℑz > 0) , (1.18)

with a non-decreasing function Φ(u) of bounded variation on R (i.e.
∫
R dΦ(u) < ∞

for smooth Φ(u)), if and only if g(z) is holomorphic in the upper half-plane and

ℑg(z) ≥ 0 and sup
1<y<∞

|yg(iy)| < ∞ . (1.19)

To apply Theorem 1.4 to the integral (1.17) one should set g(z) = −f(−1/z)/z
(cf. [5, (6.12) on p. 215]), then conditions (1.19) read as

ℑf(−1/z)/z ≤ 0 and sup
1<y<∞

|f(i/y)| < ∞ . (1.20)

Theorem 1.5 A function f : (0,∞) → R is a Stieltjes function if and only if
f(x) ≥ 0 for x > 0 and there is a holomorphic extension f(z), z = x + iy, to the
cut plane C\(−∞, 0] satisfying

ℑf(z) ≤ 0 for ℑz > 0. (1.21)

Remark 1 The inequalities (1.21) alone express a necessary condition for f to be
a Stieltjes function. In the terminology of [6, p. 358], a holomorphic function f(z)
is called a Herglotz function if ℑf > 0 when ℑz > 0, ℑf = 0 when ℑz = 0 and
ℑf < 0 when ℑz < 0. Thus, for f to be a Stieltjes function it is necessary that f
be an anti-Herglotz function (cf. [6, p. 406]).

2. Stieltjes functions containing W (z)

In this section we consider a number of functions containing W (z) and prove that
they are Stieltjes functions. We begin with the function W (z)/z.

2.1. The function W (z)/z

Although the fact that W (z)/z is a Stieltjes function could be established conve-
niently by applying one of the criteria stated in Section 1.2, we nonetheless first
present a direct proof which is of great importance for further investigations. More-
over, compared with using the criteria above, the present way allows us to make
additional useful observations, which will be given in the remarks following the
proof and then used in further discussion.
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Theorem 2.1 W (z)/z is a Stieltjes function.

Proof From (1.7), the function W (z)/z is single-valued and holomorphic in the
same domain as W (z), namely D = {z ∈ C | z /∈ B}, and can be represented by the
Cauchy integral formula

W (z)

z
=

1

2πi

∫
C

W (t)

t(t− z)
dt , (2.1)

where C is the standard ‘keyhole’ contour which consists of a small circle around
the branch point t = −1/e of radius, say r, and a large circle around the origin of
radius, say R; the circles being connected through the upper and lower edges of
the cut along the negative real axis. Then for sufficiently small r and large R the
interior of the contour C encloses any point in D.
Let us consider the integral (2.1) in the limit in which r → 0 and R → ∞. Using

asymptotic estimations (1.6) and (1.2), it is easily seen that the contributions of
each circle to the integral (2.1) go to zero. As a result, in accordance with the
assignment of values of W function on the branch cut, the integral becomes

W (z)

z
=

1

2πi

∫ −1/e

−∞

W (t)

t(t− z)
dt+

1

2πi

∫ −∞

−1/e

W (t)

t(t− z)
dt ,

which reduces to

W (z)

z
=

1

π

∫ −1/e

−∞

ℑW (t)

t(t− z)
dt , (2.2)

where |arg(z)| < π. Changing t to −t transforms the integral (2.2) to the form
(1.16)

W (z)

z
=

∫ ∞

1/e

1

z + t

µ(t)

t
dt , (2.3)

where

µ(t) =
1

π
ℑW (−t) . (2.4)

According to Lemma 1.1, µ(t) ∈ (0, 1) for t ∈ (1/e,∞), and therefore we have∫∞
1/e µ(t)dt/[t(1 + t)] < ∞ and the conditions in Definition 1.2 are satisfied. Thus

the integral (2.3) is a Stieltjes function. �

Remark 1 The function W (z)/z is a real symmetric function as is any Stieltjes
function (this immediately follows from Definition 1.2), which just corresponds to
the near conjugate symmetry property.

Remark 2 Representation (2.3)-(2.4) is also obtained in [17].

Remark 3 The representation of W (z)/z in the form (1.17) equivalent to (2.3) is

W (z)

z
=

∫ e

0

dΦ(t)

1 + tz
, (2.5)

where dΦ(t) = µ(1/t)dt. Since µ(1/t) ∈ (0, 1) for t ∈ (0, e) by Lemma 1.1, Φ′(t) ≥ 0
and thus Φ(t) is a bounded and non-decreasing function. In addition, all the mo-
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ment integrals
∫ e
0 tn dΦ(t) (n = 0, 1, 2, . . . ) exist. This remark is useful for justifying

the use of Padé approximants for the evaluation of W (z) based on the theory in
[5, Ch. 5].

Remark 4 An existence of representation (2.5) also follows from Theorem 1.4.
Indeed, for function f(z) = W (z)/z conditions (1.20) read as

ℑW (−1/z) ≥ 0 and sup
1<y<∞

|yW (i/y)| < ∞ .

The first condition is satisfied by (1.4) because ℑ(−1/z) and ℑz are of the same
sign. To verify the second condition we set W (i/y) = u + iv and put s = 1/y in
(1.11) and (1.12). As a result, since 0 < v < π/2 for y > 0, we obtain

|yW (i/y)|2 = y2(u2 + v2) = y2v2(1 + tan2 v) = y2v2/ cos2 v = e−2v tan v ≤ 1.

To extend the result to the lower half-plane ℑz < 0 it is enough to take the complex
conjugate of both sides of the representation (1.17) and use the near conjugate
symmetry of W . Thus Theorem 1.4 gives us one more way to prove that W (z)/z
is a Stieltjes function.

2.2. Other functions containing W

By Theorem 2.1, W (x)/x ∈ S. Using this result and the properties of the set S
listed in Section 1.2 we now give some classes of functions that are members of S.

Theorem 2.2 The following functions belong to the set S, for x > 0.

(a) 1/(c+W (x)), c ≥ 0
(b) Wα(1/x), 0 ≤ α ≤ 1
(c) xβW β(1/x),−1 ≤ β ≤ 0
(d) W (x)/[x(c+W (x))], c ≥ 0
(e) 1/W (x)− 1/x
(f) c+W (xβ), c ≥ 0, −1 ≤ β ≤ 0
(g) 1/(c+W (xα)), c ≥ 0, 0 ≤ α ≤ 1
(h) xαβγW−αγ(xβ)[1 +W (xβ)]1−γ , 0 ≤ α ≤ 1, −1 ≤ β ≤ 0, 0 ≤ γ ≤ 1
(i) 1− xαWα(1/x), 0 ≤ α ≤ 1
(j) 1− x−αβWα(xβ)[1 +W (xβ)]−α, 0 ≤ α ≤ 1, −1 ≤ β ≤ 0

Proof We use the properties listed in Theorem 1.3.

(a) We apply property (ii) to W (x)/x to find that 1/W (x) ∈ S and then apply
(iii) to 1/W (x).

(b) We first apply (i) to f(x) = 1/W (x) that is in S by statement (a) and find
W (1/x) ∈ S. Then we apply (vii) to W (1/x).

(c) Apply (i) to W (x)/x and apply then (vii) to the result.
(d) Apply (xi) to the function in the statement (a) using W (0) = 0.
(e) Apply (viii) to W (x)/x using (1.7) or apply (ix) to the function in the

statement (a) with c = 0.
(f) Apply (v) to the function in the statement (a) and g(x) = xβ (−1 ≤ β ≤ 0)

that is in S [8, 9].
(g) Apply (iv) to the function in the statement (a) and g(x) = x−α ∈ S for

0 ≤ α ≤ 1.
(h) Apply (v) to functions f(x) = W (x)/x and g(x) = xβ (−1 ≤ β ≤ 0)

and find xβW−1(xβ) ∈ S. Hence by (vii) a(x) = xαβW−α(xβ) ∈ S for
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0 ≤ α ≤ 1. Then apply (v) to the function in the statement (a) with c = 1
and g(x) = xβ to get b(x) = 1+W (xβ) ∈ S. Finally apply (vi) to a(x) and
b(x).

(i) Apply (xii) to the function in the statement (c) with β = −1 using (1.7)
(or apply (x) to W (x)/x).

(j) Apply (x) (or (xii)) to the result of application of (iv) (respectively (v)) to
the function in the statement (d) with c = 1 and g(x) = xβ (−1 ≤ β ≤ 0).

�

Corollary 2.3 The derivative W ′(x) is a Stieltjes function.

Proof The proof follows from statement (d) of Theorem 2.2, taken with c = 1,
together with formula (1.13). �

The next theorem proves and generalizes a conjecture in [13].

Theorem 2.4 The following functions are Stieltjes functions for each fixed real
a ∈ (0, e]:

F0(z) =
z

1 + z
W (a(1 + z))/ [W (a(1 + z))−W (a)]2 , (2.6)

F1(z) = zW

(
a

1 + z

)/[
W (a)−W

(
a

1 + z

)]2
. (2.7)

Proof We first apply Theorem 1.5 to the function F0(z). To do so we note that
F0(z) ≥ 0 for real z > 0 (a ∈ (0, e]) and F0(z) is a holomorphic function in the
cut plane C\(−∞, 0] (cf. the branch cut B). For convenience, we define a function
V (z) = ℑF0(z), then it remains to show that V (z) ≤ 0 in the upper half-plane.
Since V (z) is a harmonic function in the domain ℑz > 0, it is subharmonic there.
Thus we can apply either the maximum principle for harmonic functions in the
form of [4, Corollary 1.10] or the maximum principle for subharmonic functions
[12, p. 19–20]. In both cases, to get the desired result it is sufficient to ascertain
that the superior limit of V (z) at all boundary points including infinity is less than
or equal to 0 [2]. In other words, V (z) ≤ 0 for ℑz > 0 if (cf. [16, p. 27])

lim
|z|→∞

V (z) ≤ 0 (ℑz > 0)

and

lim sup
y→0+

V (x+ iy) ≤ 0 for all x ∈ R . (2.8)

Since F0(z) ∼ 1/ ln z for large z due to (1.2), V (z) → 0 as |z| → ∞ and the first
condition is satisfied.
To verify the second condition we introduce variables t = a(1 + x) and s = ay

and set W (t + is) = u + iv where u = u(t, s), v = v(t, s). We also introduce a
constant b = W (a) ∈ (0, 1]. Then the condition (2.8) becomes H(t) ≥ 0 for all
t ∈ R, where

H(t) = lim sup
s→0+

v[t(t− a) + s2](u2 + v2 − b2) + as
[
(u2 + v2)(2b− u)− b2u

]
(t2 + s2)[v2 + (b− u)2]

(2.9)

For analysis of function H(t), it is convenient to consider the following five cases:
(i) −∞ < t < −1/e, (ii) −1/e ≤ t < 0, (iii) t = 0, (iv) (0 < t < a) ∪ (a < t < ∞),
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and (v) t = a. We start with the case (i). Since V (z) is continuous (from above) on
the real line z = x ∈ R, the expression under the limit sign in (2.9) is continuous
in domain {(t, s)|t ∈ R, s > 0}. Then using relation (1.9) we obtain

H(t) =
v

[(b+ v cot v)2 + v2]2

(
v2

sin2 v
− b2

)(
1− a

t

)
.

We have v ∈ (0, π) for t ∈ (−∞,−1/e), hence v2/ sin2 v > 1. Since 0 < b ≤ 1, we
conclude that in case (i) H(t) > 0. Taking into account that v = 0 in cases (ii),
(iv) and (v) and relations (1.11) and (1.12) in case (iii) it is not difficult to show
that in all of these cases H(t) = 0. Thus H(t) ≥ 0 for all real t, i.e. the condition
(2.8) is satisfied and F0(z) is a Stieltjes function.
The theorem for the function F1(z) follows from the relation

F1(z) = −F0

(
− z

1 + z

)
(2.10)

because in terms of the conditions of Theorem 1.5 the transformation in the right-
hand side of (2.10) retains the properties of F0(z). In particular, ℑF1(z) ≤ 0 for
ℑz > 0 because, first, ℑz and ℑ(−z/(1+z)) are of the opposite signs and secondly,

ℑF0(z) ≥ 0 for ℑz < 0 which follows from F0(z̄) = F0(z) due to near conjugate
symmetry and the established above non-positivity of ℑF0(z) in the upper half-
plane. Thus F1(z) is also a Stieltjes function. �

Remark 5 We can note the behaviour of functions (2.6) and (2.7) for large and
small z. Specifically, using (1.2) and (1.7) one can obtain respectively F0(z) → 0
and F1(z) → a/W 2(a) as z → ∞. Using (1.13) we find F0,1 ∼ c/z as z → 0, where
c = (1 +W (a))2/W (a).

We now have a result even stronger than Theorem 2.4 in the following corollary.

Corollary 2.5 With the constant c defined in Remark 5 the differences F0,1−c/z
are Stieltjes functions for fixed a ∈ (0, e].

Proof Follows from Remark 5 and the property (ix) given in Theorem 1.3. �

2.3. Is W a Stieltjes function?

The principal branch of the Lambert W function itself is not a Stieltjes function
in the sense of Definition 1.2. This can be shown in different ways. For example,
one can apply Theorem 1.4 to W (z) to see that the second condition (1.20) fails.
Indeed, when z = is we have by (1.11) and (1.12)

|sW (is)| = s
√

u2 + v2 = v2 sec2(v)ev tan v → ∞ as v → π/2.

The same conclusion can be reached using Theorem 1.5 because (1.4) contradicts
(1.21). Finally, W is not a Stieltjes function because it is not an anti-Herglotz
function (cf. Remark 1).
Note, however, that W function can be regarded as a Stieltjes function in the

sense of a definition given in [24] and [10] or used in [25] and different from (1.17)
by the factor z in the right hand-side. The W function can also be considered as
a generalized Stieltjes transform by the definition in [18] (which is different from
that of the generalized Stieltjes transform defined in [26, p. 30] and studied, for
example, in [20] and [22]). Finally, in [19], the terms Stieltjes function and Stieltjes
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representation are not treated as equivalent (compare definitions [19, p. 11] and
[19, p. 55]). By these definitions W (z) has a Stieltjes representation (which is the
result of multiplication of the representation (2.3) by z) though it is not a Stieltjes
function.

3. Completely monotonic functions

We denote by CM the set of all completely monotonic functions, which are defined
as follows [3].

Definition 3.1 A function f : (0,∞) → R is called a completely monotonic
function if f has derivatives of all orders and satisfies (−1)nf (n)(x) ≥ 0 for x > 0,
n = 0, 1, 2, ...

The set of Stieltjes functions is contained in the set of completely monotonic
functions, and thus all of the functions listed in Theorem 2.2 are completely mono-
tone. The set CM is a convex cone containing the positive constant functions; a
product of completely monotonic functions is again completely monotone [9, p. 61].
By Bernstein’s theorem [9, Theorem 9.3], a function f ∈ CM if and only if it is of
the form

f(x) =

∫ ∞

0
e−xξdν(ξ) (x > 0), (3.1)

where ν is an uniquely determined positive measure on [0,∞). Completely mono-
tonic functions are in turn connected with the set of Bernstein functions denoted
by B.

Definition 3.2 [8, Definition 5.1] A function f : (0,∞) → [0,∞) is called a
Bernstein function if it is C∞ and f ′ is completely monotonic.

Since W ′ ∈ S ⊂ CM, W is a Bernstein function. The same fact has been es-
tablished in [15] in a different way, based on the properties of the polynomials
appearing in the higher derivatives of W .
A Bernstein function f(x) admits the Lévy-Khintchine representation

f(x) = a+ bx+

∫ ∞

0

(
1− e−xξ

)
dν(ξ) , (3.2)

where a, b ≥ 0 and ν is a positive measure on (0,∞) satisfying
∫∞
0 ξ(1+ξ)−1dν(ξ) <

∞. It is called the Lévy measure. The equation (3.2) is obtained by integrating (3.1)
written for f ′ [8].
An important relation between the classes S and B is given by the assertion [8,

Theorem 5.4]

g ∈ S \ {0} ⇒ 1/g ∈ B. (3.3)

Combining this with the function composition result [8, Corollary 5.3] that f ∈ CM
and g ∈ B implies f ◦ g ∈ B we obtain the following lemma.

Lemma 3.3 If f ∈ CM and g ∈ S \ {0} then f(1/g) ∈ CM.

This lemma extends the list of completely monotonic functions containing W .

Theorem 3.4 The following functions are completely monotonic
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(a) xλW (x) (x > 0, λ ≤ −1).
(b) xλWα(xβ)

[
1 +W (xβ)

]γ
(x > 0, α, γ ≥ 0, −1 ≤ β ≤ 0, λ ≤ 0).

(c) xλWα(x−β)
[
1 +W (x−β)

]γ
(x > 0, α, γ ≤ 0, −1 ≤ β ≤ 0, λ ≤ 0).

(d) 1 − x−αβγWαγ(xβ)[1 +W (xβ)]γ−1 (x > 0, 0 ≤ α ≤ 1, −1 ≤ β ≤ 0, 0 ≤
γ ≤ 1).

Proof

(a) Since W (x)/x ∈ S ⊂ CM and xα ∈ CM for α ≤ 0, the function xλW (x)
(λ ≤ −1) is a product of two completely monotonic functions and the
statement (a) follows.

(b) Take function fα(x) = x−α ∈ CM (x > 0, α ≥ 0) and functions g(x) =
1/W (xβ) and h(x) = 1/(1+W (xβ)) where −1 ≤ β ≤ 0. Since 1/g ∈ S and
1/h ∈ S by Theorem 2.2 (f) with c = 0 and c = 1 respectively, by Lemma
3.3 we have fα(g(x)) = g−α(x) ∈ CM and fγ(h(x)) = h−γ(x) ∈ CM
(γ ≥ 0). Substituting functions g(x) and h(x) in the power functions and
taking a product of obtained completely monotonic functions with xλ ∈
CM (x > 0, λ ≤ 0), the statement (b) follows.

(c) Consider function fλ(x) = xλ ∈ CM (x > 0, λ ≤ 0) and functions g(x) =
W (x−β) and h(x) = 1 + W (x−β) where −1 ≤ β ≤ 0. Since 1/g ∈ S and
1/h ∈ S by Theorem 2.2 (g) with c = 0 and c = 1 respectively, by Lemma
3.3 we have fα(g(x)) = gα(x) ∈ CM and fγ(h(x)) = hγ(x) ∈ CM for α ≤ 0
and γ ≤ 0. Substituting functions g(x) and h(x) and taking a product of
obtained functions with fλ(x), the statement (c) follows.

(d) By Theorem 2.2 (h) and the assertion (3.3), for x > 0, 0 ≤ α ≤ 1, −1 ≤
β ≤ 0, 0 ≤ γ ≤ 1 we have f(x) = gαγ(x)[1 + W (xβ)]γ−1 ∈ B, where
g(x) = x−βW (xβ). In addition, the function f(x) is bounded, particularly,
0 < f(x) < 1 because 0 < [1 + W (xβ)]γ−1 < 1 and 0 < g(x) < 1 (the
latter follows from the fact that g(x) goes to 0 and 1 as x tends to 0 and
∞ respectively and g′(x) > 0, which can be established using (1.7), (1.8)
and (1.13)). Then by [8, Remark 5.5] the assertion (d) follows.

�

We note that we have considered only sufficient conditions for a function to be
completely monotonic. To find the necessary and sufficient conditions is a much
more complicated problem, so that in some cases it requires (at least as the first
step) using the methods of experimental mathematics [21].

4. Complete Bernstein functions

A very important subclass in B is the class of complete Bernstein functions
denoted by CB.

Definition 4.1 [19, Definition 6.1] A Bernstein function f is called a complete
Bernstein function if the Lévy measure in (3.2) is such that dν(t)/dt is a completely
monotonic function.

We point out four connections between classes CB and S used in this paper (for
additional relations between these classes see [19, Chapter 7]). By Proposition 7.7
in [19],

f ∈ S ⇒ f(0)− f(x) ∈ CB , (4.1)
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where the limit of f(x) at x = 0 (from the right) is assumed to be finite. Also if f
is bounded and f ∈ CB, there exists a bounded g ∈ S with limx→∞ g(x) = 0 such
that

f(x) = f(0) + g(0)− g(x) . (4.2)

In addition, [19, Theorem 7.3] and [19, Theorem 6.2(i),(ii)] establish

f ∈ CB ⇔ 1/f ∈ S \ {0} , (4.3)

f ∈ CB ⇔ f(x)/x ∈ S . (4.4)

We note at once that the statement (4.3) together with that 1/W ∈ S (by The-
orem 2.2(a) with c = 0) immediately results in a conclusion that W is a complete
Bernstein function.
Now we go back to the properties of the set S listed in Section 1.2 to prove the

last three properties therein. Let f ∈ S \ {0}.
(x) Apply sequentially (vii), (4.1), (4.3), (i), to obtain fα ∈ S (0 ≤ α ≤ 1) ⇒

fα(0) − fα(x) ∈ CB ⇒ g(x) = [fα(0)− fα(x)]−1 ∈ S ⇒ 1/g(1/x) = fα(0) −
fα(1/x) ∈ S;
(xi) Apply sequentially (4.1), (4.3), (ii), to obtain f(0) − f(x) ∈ CB ⇒ g(x) =

[f(0)− f(x)]−1 ∈ S ⇒ 1/(xg(x)) = (f(0)− f(x))/x ∈ S ⇒ (1− f(x)/f(0))/x ∈ S;
(xii) By (vii), fα ∈ S (0 ≤ α ≤ 1). Suppose that limx→0 f(x) = b ≤ ∞ and

limx→∞ f(x) = c where 0 < c < ∞. Then b−α ≤ f−α ≤ c−α, i.e. f−α is bounded.
In addition, f−α ∈ CB by (4.3). Therefore the statement (4.2) can be applied, i.e.
there exists a bounded function g ∈ S, limx→∞ g(x) = 0 such that we can write
g(x) = g(0)+b−α−f−α(x). Taking the last equation in the limit x → ∞ we obtain
g(0) + b−α = c−α, hence g = c−α − f−α and the assertion follows.

5. Concluding remarks

We have verified the statement made in in Section 1 that many functions containing
the principal branch of the Lambert W function belong to various function classes
which are characterized by their own integral forms. As a consequence, the W
function is rich in integral representations. In this paper we considered in detail
the classes of Stieltjes functions as well as the classes of completely monotonic
functions, Bernstein functions and complete Bernstein functions. Through specific
examples of functions based on W , we demonstrated a number of different ways
to establish whether a particular function belongs to one of these classes. This
paper has not exhausted the classes of functions with integral representations, and
relations between functions of W to further function classes, together with explicit
Stieltjes and other integral representations of W , will be given in a subsequent
paper.
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