Biology Seminar

12:30 - 1:30 pm Friday, March 22, 2024 BGS 0165

Keiko Yoshioka Professor Department of Cells & Systems Biology University of Toronto

CNGC-mediated Ca2+ signaling at the nexus of immunity and development

Calcium ions (Ca2+) are universal second messengers in eukaryotic signaling that control many phenomena, such as neuronal transmission in animals. Similarly, Ca2+ plays a central role in plants. However, Ca2+ channels, their signal transduction, and biological roles are still enigmatic. Plant Cyclic Nucleotide-Gated Channels (CNGCs) are a large family of Ca2+-conducting plant ion channels. Recent reports indicated that CNGCs are involved in a variety of physiological responses from immunity to development.

The Arabidopsis CNGC family has 20 members, and among them CNGC2 has been implicated in plant immunity due to the autoimmune phenotypes and impaired immune responses in various mutants (i.e. cngc2/dnd1). However, cngc2 mutants display pleiotropic phenotypes such as flowering and developmental defects, indicating multi-functionality of CNGC2. Here, we show that CNGC2 is involved in auxin signaling by affecting auxin biosynthesis. cngc2 mutants exhibit impaired sensitivity to auxin. These auxin signaling defects and the autoimmunity phenotype of cngc2 could be suppressed by knocking-out the auxin biosynthesis genes YUCCA6 (YUC6) and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1/WEI8). Ca2+ signal visualization analysis also revealed that cngc2 has a defect to generate Ca2+ signals upon auxin treatment, indicating a role of CNGC2 beyond immunity, likely controlling overall plant Ca2+ homeostasis. On the other hand, recent data indicate that a pair of other CNGCs, CNGC10 and CNGC13 are redundantly involved in immunity against fungal infection and likely herbivory.

Taken together, our current studies indicate plant CNGCs at a nexus of immunity and development signal transduction.

Westerr Biology