Individual Variation in the Time Course of Statistical Word Segmentation: An ERP Investigation Nicolette B. Noonan¹, Lisa M. D. Archibald^{1,2}, & Marc F. Joanisse¹ 1. The Brain and Mind Institute, Department of Psychology, The University of Western Ontario 2. Communication Sciences and Disorders, The University of Western Ontario

Introduction

nnoonan3@uwo.ca

OStatistical learning occurs implicitly

- learning (e.g., Romberg & Saffran, 2013). OAlthough viewed as a key mechanism for language acquisition, statistical language
- learning abilities vary even in typical adult populations.

Method

Participants

17 young adult

English monolingual; normal hearing/vision

Stimuli

Artificial language

6 tri-syllabic "words", structured unsegmented stream

 \rightarrow W/in word transitional probability = 0.3-1.0 (e.g.: Saffran et al., 1997)

Test phase

"Word" from artificial language + Non-word foil \rightarrow W/in word transitional probability of non-word = 0.0

Procedure

• Test phase: 36 auditorily presented word versus non-word pairs

 \rightarrow Two-alternative forced-choice (2AFC)

- Measured participants' behavioural responses
- Measured ERP response to words versus nonwords, time-locked to stimulus onset

O However, conventional forced-choice explicit tests may not accurately reflect

OExamining neural indices of word identification may give us a better understanding of sensitivity to newly-segmented words, and help quantify individual variation. OThe present study measured neural event-related potentials (ERPs) in response to newly learned versus unlearned "words". We examined the relation between ERP and behavioural responses to newly segmented words following exposure to a novel language

Results

2AFC scores			
correlated with			
difference in peak	U	•••••	• .
amplitude for word	I 2AF		
minus non-word	/ioura	•••••	•••
evoked responses	Behav		
only for above-	rect,		
chance learners	% Cor		
(black), but not			
when below-chance	2		
learners (purple)	-7	-6	-
are included			

The authors have no financial or non-financial relationships relative to the content of this poster that compromise or have the potential to compromise professional judgment. Presented at: SRCLD; June, 2016

Conclusions

ERPs differentiated newly-segmented
words from non-words
 Enhanced N100 in response to
"word" onset (Sanders et al., 2003)
 May index of word segmentation
(Sanders et al., 2002)
Significant correlation between
magnitude of the ERP effect and
behavioural outcome measure
 Demonstrates a relationship
between implicit and explicit
measures of statistical word
segmentation
 Effect was not present when
below-chance performers were
included
 May reflect inaccurate
segmentation strategies adopted
by below-chance performers
Successful word segmentation was
reflected by both an explicit
behavioural test and implicit measures
of neural responding

References

Romberg, A. R., & Saffran, J. R. (2013). All together now: Concurrent learning of multiple structures in an artificial language. Cognitive science, 37(7),

Sanders, L. D., & Neville, H. J. (2003). An ERP study of continuous speech processing: I. Segmentation, semantics, and syntax in native speakers. Cognitive Brain Research, 15(3), 228-240. Sanders, L. D., Newport, E. L., & Neville, H. J. (2002). Segmenting nonsense: an event-related potential index of perceived onsets in continuous