Problem Set 10

November 27, 2023

All numbered exercises are from the textbook Calculus Vol. 3, by OpenStax.

1. Exercises 4.8.359-385 (odd only).
2. Find the extreme values of f subject to both constraints:
(a) $f(x, y, z)=x+y+z ; x^{2}+z^{2}=2, x+y=1$
(b) $f(x, y, z)=z ; x^{2}+y^{2}=z^{2}, x+y+z=24$
(c) $f(x, y, z)=x^{2}+y^{2}+z^{2} ; x-y=1, y^{2}-z^{2}=1$.
3. Find the extreme values of f on the region described by the inequality:
(a) $f(x, y)=x^{2}+y^{2}+4 x-4 y ; x^{2}+y^{2} \leq 9$
(b) $f(x, y)=2 x^{2}+3 y^{2}-4 x-5 ; x^{2}+y^{2} \leq 16$
(c) $f(x, y)=e^{-x y} ; x^{2}+4 y^{2} \leq 1$.
4. Use Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter p is a square.
5. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.
6. The plane $4 x-3 y+8 z=5$ intersects the cone $z^{2}=x^{2}+y^{2}$ in an ellipse. Find the highest and lowest points on the ellipse.
