Problem Set 3

October 2, 2023

All numbered exercises are from the textbook Calculus Vol. 3, by OpenStax.

1. Exercises 3.1.3-25 (odd only).
2. Exercise 3.1.34.
3. Exercises 3.2.41-61 (odd only).
4. Exercise 3.2.60.
5. Find parametric equations for the tangent line to the curve defined by $\mathbf{r}(t)$ at the specified point.
(a) $\mathbf{r}(t)=\left\langle t^{2}+1,4 \sqrt{t}, e^{t^{2}-t}\right\rangle, \quad(2,4,1)$
(b) $\mathbf{r}(t)=\left\langle\ln (t+1), t \cos (2 t), 2^{t}\right\rangle, \quad(0,0,1)$
(c) $\mathbf{r}(t)=\left\langle e^{-t} \cos t, e^{-t} \sin t, e^{-t}\right\rangle, \quad(1,0,1)$
(d) $\mathbf{r}(t)=\left\langle\sqrt{t^{2}+3}, \ln \left(t^{2}+3\right), t\right\rangle, \quad(2, \ln 4,1)$
6. If the curve has the property that the position vector $\mathbf{r}(t)$ is always perpendicular to the tangent vector $\mathbf{r}^{\prime}(t)$, show that the curve lies on a sphere centered at the origin.
7. If $\mathbf{u}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right]$, show that

$$
\mathbf{u}^{\prime}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime \prime}(t)\right]
$$

