Problem Set 4

October 9, 2023

All numbered exercises are from the textbook Calculus Vol. 3, by OpenStax.

1. Exercises 3.3.103-111 (odd only).
2. Exercise 3.3.106.
3. Exercises 3.3.119-123 (odd only).
4. Exercise 3.3.130.
5. Exercises 3.3.131-139 (odd only).
6. Find an equation of a parabola that has curvature 4 at the origin.
7. At what point does the curve $y=\ln x$ have its maximum curvature? What happens to the curvature as $x \longrightarrow \infty$?
8. Find the curvature of $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ at the point $(1,1,1)$.
9. Let C be a smooth planar curve given by parametric equations $x=f(t), y=g(t)$, where f and g are two times continuously differentiable functions. Show that the curvature of C is given by the formula

$$
\kappa=\frac{\left|f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right|}{\left[\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right]^{3 / 2}}
$$

[Hint: Use the formula (3.16) from Theorem 3.6 in the text.]

