# MEASURE THEORY LECTURE NOTES 

JANUSZ ADAMUS

## XI. Complex Measures

Definition 1. Let $\mathcal{M}$ be a $\sigma$-algebra on a set $X$. A complex measure on $\mathcal{M}$ is a complex-valued function $\mu: \mathcal{M} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
\mu\left(\bigcup_{n} E_{n}\right)=\sum_{n} \mu\left(E_{n}\right) \tag{1}
\end{equation*}
$$

for every denumerable collection $\left\{E_{n}\right\}_{n}$ of pairwise disjoint elements of $\mathcal{M}$.
Remark 2. 1. It follows from the definition that $\mu(\varnothing)=0$. Indeed, we have $\varnothing=\varnothing \sqcup \varnothing$ and hence $\mu(\varnothing)=2 \mu(\varnothing)$, which in light of $\mu(\varnothing) \in \mathbb{C}$ implies $\mu(\varnothing)=0$.
2. Since the left side of (1) is a complex number, it follows that the series on the right side of (1) is always convergent. Moreover, the sum of the series is independent of the ordering of the sets $E_{n}$, and hence the series is absulutely convergent.

Example 3. The following is a model example of a complex measure. By the Radon-Nikodym Theorem below, all complex measures arise in this way modulo a set of measure zero.

Let $(X, \mathcal{M}, \mu)$ be a $\sigma$-finite measure space, and let $h: X \rightarrow \mathbb{C}$ be an integrable function. (Recall that a complex-valued function $f=u+i v$, where $u$ and $v$ are real-valued, is called integrable when both $u$ and $v$ are integrable as real-valued functions. In this case, one defines $\int f:=\int u+i \int v$.) Then, the function $\nu: \mathcal{M} \rightarrow$ $\mathbb{C}$ defined as

$$
\begin{equation*}
\nu(A):=\int_{A} h d \mu \tag{2}
\end{equation*}
$$

is a complex measure. The proof is an elementary exercise.
Definition 4. Let $\mu: \mathcal{M} \rightarrow \mathbb{C}$ be a complex measure on a $\sigma$-algebra $\mathcal{M}$. The function $|\mu|: \mathcal{M} \rightarrow \mathbb{R}$ defined as

$$
|\mu|(E):=\sup \left\{\sum_{n=1}^{\infty}\left|\mu\left(E_{n}\right)\right|:\left\{E_{n}\right\}_{n} \subset \mathcal{M}, E=\bigcup_{n=1}^{\infty} E_{n}, E_{j} \cap E_{k}=\varnothing \text { for } j \neq k\right\}
$$

is called the total variation measure of $\mu$.
Remark 5. Observe that we always have $|\mu|(A) \geq|\mu(A)|$, for every $A \in \mathcal{M}$. Indeed, the family $\{A, \varnothing, \varnothing, \ldots\}$ forms a measurable partition of $A$, and hence

$$
|\mu|(A) \geq|\mu(A)|+\sum_{\substack{n=2 \\ 1}}^{\infty}|\mu(\varnothing)|=|\mu(A)|
$$

Exercise 6. For a signed measure $\mu$ on a $\sigma$-algebra $\mathcal{M}$, one defines the total variation measure of $\mu$ as $|\mu|:=\mu^{+}+\mu^{-}$, where $\mu^{+}$and $\mu^{-}$are the unique positive measures from the Jordan Decomposition Theorem for $\mu$. Note that a real-valued (i.e., finite) signed measure $\mu$ may be regarded as a complex measure. Prove that if $\mu$ is a real-valued signed measure, then the two definitions of $|\mu|$ coincide.
Theorem 7. The total variation $|\mu|$ of a complex measure $\mu$ on a $\sigma$-algebra $\mathcal{M}$ is a positive measure on $\mathcal{M}$.

Proof. Let $\left\{E_{n}\right\}_{n=1}^{\infty} \subset \mathcal{M}$ be an arbitrary collection of pairwise disjoint measurable sets. Set $E:=\bigcup_{n} E_{n}$. We want to show that

$$
|\mu|(E)=\sum_{n=1}^{\infty}|\mu|\left(E_{n}\right)
$$

To this end, for every $n \in \mathbb{Z}_{+}$, choose an arbitrary real number $t_{n}$ satisfying $|\mu|\left(E_{n}\right)>t_{n}$. Then, by definition of $|\mu|$, there exists for every $n$ a measurable partition $\left\{A_{n k}\right\}_{k=1}^{\infty}$ of $E_{n}$ such that $\sum_{k=1}^{\infty}\left|\mu\left(A_{n k}\right)\right| \geq t_{n}$. Since the (countable) family $\left\{A_{n k}\right\}_{n, k=1}^{\infty}$ forms a partition of $E$, we get that

$$
|\mu|(E) \geq \sum_{n, k=1}^{\infty}\left|\mu\left(A_{n k}\right)\right|=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\left|\mu\left(A_{n k}\right)\right|\right) \geq \sum_{n=1}^{\infty} t_{n}
$$

(Note that above we used the absolute convergence of the series in question to rearrange its terms without altering the sum.)
Taking supremum over all sequences $\left(t_{n}\right)_{n=1}^{\infty}$ as above, we get

$$
|\mu|(E) \geq \sum_{n=1}^{\infty}|\mu|\left(E_{n}\right)
$$

For the proof of the opposite inequality, let $\left\{A_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$ be another arbitrary partition of $E$. Then, for every $k,\left\{A_{k} \cap E_{n}\right\}_{n=1}^{\infty}$ is a measurable partition of $A_{k}$, and for every $n,\left\{A_{k} \cap E_{n}\right\}_{k=1}^{\infty}$ is a measurable partition of $E_{n}$. Thus, again by absolute convergence, we get

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\mu\left(A_{k}\right)\right|=\sum_{k=1}^{\infty}\left|\sum_{n=1}^{\infty} \mu\left(A_{k} \cap E_{n}\right)\right| & \leq \sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty}\left|\mu\left(A_{k} \cap E_{n}\right)\right|\right) \\
& =\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\left|\mu\left(A_{k} \cap E_{n}\right)\right|\right) \leq \sum_{n=1}^{\infty}|\mu|\left(E_{n}\right)
\end{aligned}
$$

Taking supremum over all countable measurable partitions $\left\{A_{k}\right\}_{k}$ of $E$, we get $|\mu|(E) \leq \sum_{n=1}^{\infty}|\mu|\left(E_{n}\right)$. This proves countable additivity of $|\mu|$.

The equality $|\mu|(\varnothing)=0$ follows from $\mu(\varnothing)=0$ and the fact that the only countable measurable partition of $\varnothing$ consists of copies of $\varnothing$.

Perhaps even more interestingly, the total variation of any complex measure is a finite positive measure, as the following theorem shows.
Theorem 8. If $\mu$ is a complex measure on a measurable space $(X, \mathcal{M})$, then the total variation measure $|\mu|$ satisfies $|\mu|(X)<+\infty$.

We shall first establish an auxiliary lemma, which is a somewhat surprising complex analysis result of independent interest.

Lemma 9. Given any collection $\left\{z_{1}, \ldots, z_{N}\right\}$ of (not necessarily pairwise distinct) $N$ complex numbers, there exists an index subset $S \subset\{1, \ldots, N\}$ such that

$$
\left|\sum_{n \in S} z_{n}\right| \geq \frac{1}{\pi} \cdot \sum_{n=1}^{N}\left|z_{n}\right|
$$

Proof. For $1 \leq n \leq N$, let $\alpha_{n} \in(-\pi, \pi]$ be such that $z_{n}=\left|z_{n}\right| e^{i \alpha_{n}}$. For $\vartheta \in[-\pi, \pi]$, let

$$
S(\vartheta):=\left\{n \in\{1, \ldots, N\}: \cos \left(\alpha_{n}-\vartheta\right)>0\right\}
$$

Then,

$$
\begin{array}{r}
\left|\sum_{n \in S(\vartheta)} z_{n}\right|=\left|e^{-i \vartheta}\right| \cdot\left|\sum_{n \in S(\vartheta)} z_{n}\right|=\left|\sum_{n \in S(\vartheta)} e^{-i \vartheta} z_{n}\right| \geq \operatorname{Re}\left(\sum_{n \in S(\vartheta)}\left|z_{n}\right| e^{i\left(\alpha_{n}-\vartheta\right)}\right) \\
=\sum_{n \in S(\vartheta)}\left|z_{n}\right| \cos \left(\alpha_{n}-\vartheta\right)=\sum_{n=1}^{N}\left|z_{n}\right| \cos ^{+}\left(\alpha_{n}-\vartheta\right)
\end{array}
$$

where, as usual, $\cos ^{+}=\max \{\cos , 0\}$.
Now, choose $\vartheta_{0} \in[-\pi, \pi]$ so as to maximize the latter sum, and set $S:=S\left(\vartheta_{0}\right)$. By the Mean Value Theorem for Riemann integral, we have

$$
\sum_{n=1}^{N}\left|z_{n}\right| \cos ^{+}\left(\alpha_{n}-\vartheta_{0}\right) \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{n=1}^{N}\left|z_{n}\right| \cos ^{+}\left(\alpha_{n}-\vartheta\right)\right) d \vartheta
$$

and hence

$$
\begin{aligned}
\left|\sum_{n \in S} z_{n}\right| & \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{n=1}^{N}\left|z_{n}\right| \cos ^{+}\left(\alpha_{n}-\vartheta\right)\right) d \vartheta \\
& =\sum_{n=1}^{N}\left(\left|z_{n}\right| \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos ^{+}\left(\alpha_{n}-\vartheta\right) d \vartheta\right)=\sum_{n=1}^{N}\left(\left|z_{n}\right| \cdot \frac{1}{\pi}\right)=\frac{1}{\pi} \cdot \sum_{n=1}^{N}\left|z_{n}\right|
\end{aligned}
$$

where the penultimate equality follows from the fact that $\cos ^{+}$is periodic with period $2 \pi$, and hence $\int_{-\pi}^{\pi} \cos ^{+}\left(\alpha_{n}-\vartheta\right) d \vartheta=2$ independently of the choice of $\alpha_{n}$.

Proof of Theorem 8. Suppose first that, for some $E \in \mathcal{M}$, we have $|\mu|(E)=+\infty$. Set $t:=\pi(1+|\mu(E)|)$. (Of course, $t<+\infty$, since $\mu$ is a complex measure.)

Since $|\mu|(E)=+\infty$, then by definition of $|\mu|$ there exist a measurable partition $\left\{E_{n}\right\}_{n=1}^{\infty}$ of $E$ and a positive integer $N$ such that

$$
\sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right|>t
$$

Applying Lemma 9 with $z_{n}:=\mu\left(E_{n}\right)$, we conclude that there is a measurable set $A \subset E$ (namely, the union of some of the $E_{1}, \ldots, E_{N}$ ) such that

$$
|\mu(A)|>\frac{t}{\pi} \geq 1
$$

Moreover, for $B:=E \backslash A$, we also have

$$
|\mu(B)|=|\mu(E \backslash A)|=|\mu(E)-\mu(A)| \geq|\mu(A)|-|\mu(E)|>\frac{t}{\pi}-|\mu(E)|=1
$$

We thus have $E=A \sqcup B$, with $|\mu(A)|>1$ and $|\mu(B)|>1$. By additivity of $|\mu|$, at least one of the $A, B$ must be of infinite $|\mu|$-measure.

Now, if $|\mu|(X)=+\infty$, we construct recursively an infinite sequence $\left(A_{n}\right)_{n=1}^{\infty} \subset$ $\mathcal{M}$ of pairwise disjoint sets with $\left|\mu\left(A_{n}\right)\right|>1$ for all $n$, as follows: By the first part of the proof, we can partition $X$ into $A_{1}$ and $B_{1}$ such that $\left|\mu\left(A_{1}\right)\right|>1$ and $|\mu|\left(B_{1}\right)=+\infty$. Having defined $A_{1}, \ldots, A_{k}$ and $B_{1}, \ldots, B_{k}$, partition $B_{k}$ into $A_{k+1}$ and $B_{k+1}$ such that $\left|\mu\left(A_{k+1}\right)\right|>1$ and $|\mu|\left(B_{k+1}\right)=+\infty$.

Then, by additivity of $\mu$, we have $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$. In particular, the series $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ is absolutely convergent. Hence, by the Basic Divergence Test, $\lim _{n \rightarrow \infty}\left|\mu\left(A_{n}\right)\right|=0$, contradicting the choice of the $A_{n}$.
Exercise 10. (a) Show that if $\mu, \nu$ are complex measures on a $\sigma$-algebra $\mathcal{M}$, then so are $\mu+\nu$ and $c \cdot \mu$ for any $c \in \mathbb{C}$ (where $(\mu+\nu)(E)=\mu(E)+\nu(E)$ and $(c \mu)(E)=c \cdot \mu(E)$ for $E \in \mathcal{M})$. Therefore the set of all complex measures on $\mathcal{M}$ forms a complex vector space.
(b) Prove that the function $\|\mu\|:=|\mu|(X)$ defines a norm on that vector space.

## Absolute Continuity.

Definition 11. Let $\mu$ be a positive measure on a $\sigma$-algebra $\mathcal{M}$, and let $\lambda$ be an arbitrary measure on $\mathcal{M}$. We say that $\lambda$ is absolutely continuous with respect to $\mu$, and write $\lambda \ll \mu$, when $\lambda(E)=0$ for all $E \in \mathcal{M}$ with $\mu(E)=0$.

For the following proposition, recall that a (positive, signed, or complex) measure $\mu$ is said to be concentrated on a measurable set $A$, when $\mu(E)=0$ for every measurable $E \subset A^{c}$.
Proposition 12. Suppose $\lambda, \lambda_{1}, \lambda_{2}$ are arbitrary measures on a $\sigma$-algebra $\mathcal{M}$, and $\mu$ is a positive measure on $\mathcal{M}$. Then:
(i) If $\lambda$ is concentrated on $A \in \mathcal{M}$, then so is $|\lambda|$.
(ii) If $\lambda_{1} \perp \lambda_{2}$, then $\left|\lambda_{1}\right| \perp\left|\lambda_{2}\right|$.
(iii) If $\lambda_{1} \perp \mu$ and $\lambda_{2} \perp \mu$, then $\left(\lambda_{1}+\lambda_{2}\right) \perp \mu$.
(iv) If $\lambda_{1} \ll \mu$ and $\lambda_{2} \ll \mu$, then $\left(\lambda_{1}+\lambda_{2}\right) \ll \mu$.
(v) If $\lambda \ll \mu$, then $|\lambda| \ll \mu$.
(vi) If $\lambda_{1} \ll \mu$ and $\lambda_{2} \perp \mu$, then $\lambda_{1} \perp \lambda_{2}$.
(vii) If $\lambda \ll \mu$ and $\lambda \perp \mu$, then $\lambda \equiv 0$.

Proof. (i) Supposed first that $\lambda$ is a signed measure. By the Hahn and Jordan decomposition theorems, there exist a set $E \in \mathcal{M}$ and positive measures $\lambda^{+}, \lambda^{-}$on $\mathcal{M}$ all such that $\lambda=\lambda^{+}-\lambda^{-}, \lambda^{+}$is concentrated on $E^{c}$, and $\lambda^{-}$is concentrated on $E$. Let then $B \in \mathcal{M} \cap \mathcal{P}\left(A^{c}\right)$ be arbitrary. We have

$$
\begin{aligned}
\lambda^{+}(B)=\lambda^{+}(B \cap E)+\lambda^{+} & \left(B \cap E^{c}\right)=0+\lambda^{+}\left(B \cap E^{c}\right) \\
& =-\lambda^{-}\left(B \cap E^{c}\right)+\lambda^{+}\left(B \cap E^{c}\right)=\lambda\left(B \cap E^{c}\right)=0,
\end{aligned}
$$

since $B \cap E \subset E$ and $B \cap E^{c} \subset E^{c} \cap A^{c}$. Similarly,

$$
\begin{aligned}
\lambda^{-}(B)=\lambda^{-}(B \cap E)+\lambda^{-}\left(B \cap E^{c}\right) & =\lambda^{-}(B \cap E)+0 \\
& =\lambda^{-}(B \cap E)+\left(-\lambda^{+}(B \cap E)\right)=-\lambda(B \cap E)=0 .
\end{aligned}
$$

Thus, $|\lambda|(B)=\lambda^{+}(B)+\lambda^{-}(B)=0$.

Now, suppose $\lambda$ is a complex measure. Let $B \in \mathcal{M} \cap \mathcal{P}\left(A^{c}\right)$ be arbitrary, and let $\left\{B_{n}\right\}_{n=1}^{\infty}$ be an arbitrary measurable partition of $B$. Then, for each $n, B_{n} \subset A^{c}$ and hence $\lambda\left(B_{n}\right)=0$. Consequently, $\sum_{n=1}^{\infty}\left|\lambda\left(B_{n}\right)\right|=0$. Since the $\left\{B_{n}\right\}$ were arbitrary, we get $|\lambda|(B)=0$.

Property (ii) follows directly from (i) and definition of 'mutually singular'.
For the proof of (iii), choose $A_{1}, B_{1}, A_{2}, B_{2} \in \mathcal{M}$ such that $B_{1}=A_{1}^{c}, B_{2}=A_{2}^{c}$, $\lambda_{1}$ is concentrated on $A_{1}, \lambda_{2}$ is concentrated on $A_{2}$, and $\mu$ is concentrated on $B_{1}$ as well as on $B_{2}$. The latter property means that $\mu$ is concentrated on $B_{1} \cap B_{2}$. Indeed, for any measurable $E \subset\left(B_{1} \cap B_{2}\right)^{c}$, we have $E=E_{1} \cup E_{2}$ with $E_{i}=E \cap B_{i}^{c}$, and hence $0 \leq \mu(E) \leq \mu\left(E_{1}\right)+\mu\left(E_{2}\right)=0+0$. Since $\lambda_{1}+\lambda_{2}$ is concentrated on $A_{1} \cup A_{2}$, the result follows.

Property (iv) is trivial.
For (v), suppose first that $\lambda$ is a signed measure, and let $E \in \mathcal{M}$ and $\lambda^{+}, \lambda^{-}$be as in the proof of $(\mathrm{i})$. Let $B \in \mathcal{M}$ be such that $\mu(B)=0$. Then, by monotonicity of $\mu, \mu(B \cap E)=0=\mu\left(B \cap E^{c}\right)$ as well. Since $\lambda \ll \mu$, we get

$$
\begin{aligned}
\lambda^{+}(B)=\lambda^{+}(B \cap E)+\lambda^{+} & \left(B \cap E^{c}\right)=0+\lambda^{+}\left(B \cap E^{c}\right) \\
& =-\lambda^{-}\left(B \cap E^{c}\right)+\lambda^{+}\left(B \cap E^{c}\right)=\lambda\left(B \cap E^{c}\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda^{-}(B)=\lambda^{-}(B \cap E)+\lambda^{-} & \left(B \cap E^{c}\right)=\lambda^{-}(B \cap E)+0 \\
& =\lambda^{-}(B \cap E)+\left(-\lambda^{+}(B \cap E)\right)=-\lambda(B \cap E)=0
\end{aligned}
$$

and hence $|\lambda|(B)=\lambda^{+}(B)+\lambda^{-}(B)=0$.
Now, suppose $\lambda$ is a complex measure. Let $B \in \mathcal{M}$ be an arbitrary set with $\mu(B)=0$, and let $\left\{B_{n}\right\}_{n=1}^{\infty}$ be an arbitrary measurable partition of $B$. Then, for each $n, B_{n} \subset B$, hence $\mu\left(B_{n}\right)=0$ and so $\lambda\left(B_{n}\right)=0$. Consequently, $\sum_{n=1}^{\infty}\left|\lambda\left(B_{n}\right)\right|=$ 0 . Since the $\left\{B_{n}\right\}$ were arbitrary, we get $|\lambda|(B)=0$.

Proofs of properties (vi) and (vii) are left as an exercise.
We finish this section with a statement of a complex-measure version of the Radon-Nikodym theorem. The proof will be covered in an in-class presentation.

Theorem 13 (Radon-Nikodym). Let $\mu$ be a positive $\sigma$-finite measure on a $\sigma$-algebra $\mathcal{M}$ on $X$, and let $\lambda$ be a complex measure on $\mathcal{M}$. Then:
(i) There is a unique pair $\left(\lambda_{a}, \lambda_{s}\right)$ of complex measures on $\mathcal{M}$ such that

$$
\lambda=\lambda_{a}+\lambda_{s}, \quad \lambda_{a} \ll \mu, \quad \lambda_{s} \perp \mu
$$

Moreover, if $\lambda$ is positive finite, then so are $\lambda_{a}$ and $\lambda_{s}$.
(ii) There is a unique (a.e.) integrable function $h: X \rightarrow \mathbb{C}$ such that

$$
\lambda(E)=\int_{E} h d \mu \quad \text { for all } E \in \mathcal{M}
$$

Definition 14. The pair $\left(\lambda_{a}, \lambda_{s}\right)$ is called the Lebesgue decomposition of $\lambda$ relative to $\mu$.

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

Email address: jadamus@uwo.ca

