Practice Term Test 1

- 1. State the definitions of an algebra, σ -algebra, and monotone class of subsets of a set X.
- 2. For each of the following, prove or give a specific counterexample (with justification):
 - (a) Every algebra \mathcal{A} on a set X is a σ -algebra.
 - (b) Every σ -algebra \mathcal{A} on a set X is a monotone class.
 - (c) Every monotone class \mathcal{M} on a set X is a σ -algebra.
 - (d) If $A_1 \subset A_2 \subset \dots$ are σ -algebras on X, then $\bigcup_i A_i$ is a σ -algebra on X.
 - (e) If $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots$ are monotone classes on X, then $\bigcup_i \mathcal{M}_i$ is a monotone class on X.
- **3.** State the definitions of a measurable space, measure, and outer measure.
- **4.** Give an example of a finite set X and an outer measure μ^* on X which is not a measure.
- 5. Let μ^* be an outer measure on a set X. State the definition of a μ^* -measurable set.
- **6.** (a) State the definition of a regular outer measure.
 - (b) Let \mathcal{C} be a collection of subsets of a set X such that $\emptyset \in \mathcal{C}$, and let $\zeta : \mathcal{C} \to [0, \infty]$ be a function such that $\zeta(\emptyset) = 0$. State the Caratheodory construction of an outer measure μ^* from ζ .
- 7. (a) Let (X, \mathcal{M}, μ) be a measure space. State the definition of a μ -null set.
 - (b) Let $n \in \mathbb{Z}_+$ and let m (resp. m^*) denote the Lebesgue measure (resp. outer measure) on \mathbb{R}^n . Prove that every set $A \subset \mathbb{R}^n$ with $m^*(A) = 0$ is Lebesgue measurable and satisfies m(A) = 0.
- **8.** (a) State the definition of Borel measurable sets in a metric space (X, d).
 - (b) Let \mathcal{B} denote the σ -algebra of Borel measurable sets in \mathbb{R} and let m^* be the Lebesgue outer measure in \mathbb{R} . Prove or give a counterexample (with justification): If $A \subset \mathbb{R}$ satisfies $m^*(A) = 0$, then there exist $B, C \in \mathcal{B}$ such that $A = B \setminus C$.
- **9.** Let m^* denote the Lebesgue outer measure in \mathbb{R}^2 . Find $m^*(A)$ for the sets A from the following list. Which of the sets are m^* -measurable? Justify your answers.
 - (a) $A = \{0\} \times \mathbb{R}$.
 - (b) $A = \mathbb{Q} \times (\mathbb{R} \setminus \mathbb{Q})$.
 - (c) $A = \mathbb{Q} \times \mathbb{R}$.
 - (d) $A = \mathbb{Q} \times V$, where V is a Vitali set in [0, 1].
- **10.** Let (X, \mathcal{M}) be a measurable space and let $f: X \to \mathbb{R}$.
 - (a) Prove that f is a measurable function if and only if $f^{-1}(B) \in \mathcal{M}$ for every Borel measurable $B \subset \mathbb{R}$.
 - (b) Prove that f is a simple function if and only if f(X) is a finite set and f is measurable.
- 11. Let $S \subset [0,1]^2 \subset \mathbb{R}^2$ denote the Sierpiński carpet; i.e., $S = \bigcap_{i=1}^{\infty} S_i$, where

$$S_1 = [0,1]^2 \setminus \left(\frac{1}{3}, \frac{2}{3}\right)^2$$
,

and S_{i+1} is obtained from S_i by removing the open middle ninth square from each of the 8^i congruent squares of area $\frac{1}{9^i}$ that S_i is composed of.

Let m denote the Lebesgue measure in \mathbb{R}^2 . Find m(S). Find $\dim_{\mathcal{H}}(S)$. Justify your answers.

- 12. Prove that the integral of a non-negative simple function is well defined; i.e., independent of its representation as a sum of characteristic functions (Exercise 6.1).
- **13.** Exercises 3.5, 3.7, 4.2, 4.13, 4.16, 5.1, 5.8, 6.5, 7.3, and 7.10 from the text.