Practice Term Test 2

- 1. Exercises 7.4, 7.6, 7.10, 7.12, 7.13, 7.15, 7.26.
- **2.** Exercises 8.1, 8.3, 8.5, 8.7, 8.8.
- **3.** Exercises 11.3, 11.4, 11.5, 11.10, 11.11, 11.12, 11.15.
- **4.** Let $n \geq 2$ and let S be a standard *n*-simplex in \mathbb{R}^n with base of length a, for some a > 0. That is,

$$S := \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_i \ge 0, \ \sum_{i=1}^n x_i \le a \}.$$

Use Fubini Theorem (and induction) to find the Lebesgue integral $\int_{\mathbb{R}^n} \chi_S$.

For Problems 5 and 6, let (X, \mathcal{M}, μ) be a σ -finite measure space, and let $f : X \to \mathbb{R}$ be an \mathcal{M} -measurable function. Define the *distribution function* of f by

$$\mu_f(t) := \mu(\{x \in X : |f(x)| \ge t\}), \quad t > 0.$$

- 5. Show that $\mu_f: (0,\infty) \to [0,\mu(X)]$ is non-increasing and Borel measurable.
- **6.** Prove that, for any $p \in [1, \infty)$,

$$\int_X |f(x)|^p d\mu(x) = \int_0^\infty \mu_f(t) p t^{p-1} dt.$$

Hint: $|f(x)|^p = \int_0^{|f(x)|} pt^{p-1} dt$.