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The goal of this talk is to extend the join and slice constructions to the higher-categorical
context and to use these to define (co)limits of diagrams indexed by simplicial sets in a quasi-
category. The main reference is [Joy02].

Definition. The join of simplicial sets is the unique functor ∗ : sSet× sSet→ sSet together with
natural transformations K → K ∗ L← L such that:

1. ∆m ∗∆n ∼= ∆m+n+1

2. The functors − ∗ L : sSet→ L/ sSet andK ∗ − : sSet→ K/ sSet preserve colimits.

Explicitly, we can describe the n-simplices of A ∗B as follows:

(A ∗B)n =
∐

i+j=n

Ai ×Bj

for n ≥ 0, with the convention that A−1 = B−1 = {•}. Notice that A ∗ ∅ = ∅ ∗A = A.
This join generalizes the join of 1-categories: if A,B are 1-categories we have a natural iso-

morphism N(A ∗B) ' N(A) ∗N(B).

Proposition 1. If C and D are quasicategories then C ∗D is a quasicategory.

Proof. Consider an inner horn in the join p : Λn
i → C ∗D, where 0 < i < n. If p factors through

one of the inclusionsC ↪→ C∗D ←↩ Dwe are done. Sowemay suppose that p carries the vertices
{0, . . . , j} into C and the vertices {j + 1, . . . , n} intoD. Restricting pwe get maps ∆{0,...,j} → C,
∆{j+1,...,n} → D which together determine a map ∆n ' ∆{0,...,j} ∗ ∆{j+1,...,n} → C ∗ D that
solves the lifting problem. �

Proposition 2. For any simplicial set T the functor

− ∗ T : sSet→ T/ sSet

S 7→ (T ↪→ S ∗ T )

has a right adjoint.

Proof. Immediate by the Adjoint Functor Theorem. �
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We will write X/t (or X/T if there is no risk of confusion) for the value of right adjoint
T/ sSet→ sSet on t : T → X . By definition, we have:

homt(S ∗ T,X) ' hom(S,X/t)

where a map homt(S ∗ T,X) is the set of simplicial maps f : S ∗ T → X such that f |T = t. This
means in particular that we can describe the n-simplices of the slice X/t as:

(X/t)n = {y : ∆n ∗ T → X | Y |T = t}.

The following are useful identities between joins of simplices, horns and spheres.

Lemma 3. We have identifications:

1. (∂∆m ∗∆n) ∪ (∆m ∗ ∂∆n) ' ∂∆m+n+1.

2. (Λm
k ∗∆n) ∪ (∆m ∗ ∂∆n) ' Λm+n+1

k .

3. (∂∆m ∗∆n) ∪ (∆m ∗ Λn
k ) ' Λm+n+1

m+k+1 .

The theory that we will describe depends on the following technical lemma.

Lemma 4. Given i : A ↪→ B and j : S ↪→ T inclusions of simplicial sets, consider the inclusions
u : (A ∗ T ) ∪ (B ∗ S) ↪→ B ∗ T . Fix a diagram t : T → X and define s := t ◦ j : S → X . For any
simplicial map f : X → Y there is a canonical bijection between the class of commutative squares of the
form:

(A ∗ T ) ∪ (B ∗ S) X

B ∗ T Y

in T/ sSet, and the class of commutative squares of the form:

A X/t

B (Y/ft)×Y/fs (X/s)

in sSet.
Moreover a square of one class has a diagonal filler if and only if its corresponding square in the other

class has a diagonal filler. �

We will see that a slice over a quasicategory is a quasicategory, which follows from the fact
that the projection from a slice simplicial set X/t → X is a right fibration. But actually a much
more general statement holds (Theorem 6). We first show this for simplices.
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Lemma 5. Let f : X → Y be an inner fibration and t : ∆n → X a simplicial map. If 0 ≤ k < n the
projection:

p : X/∆n → (X/Λn
k )×Y/Λn

k
(Y/∆n)

is a trivial fibration.

Proof. By Lemma 4 it suffices to show that:

(∆m ∗ Λn
k ) ∪ (∂∆m ∗∆n) X

∆m ∗∆n Y

u f

has a diagonal filler. Using (the dual of) the second identity in Lemma 3, u becomes the inclusion
Λm+n+1
k+m+1 ↪→ ∆m+n+1. So the square has a diagonal filler since f is an inner fibrations and 0 <

m + k + 1 < m + n + 1. �

Theorem 6. Let f : X → Y be an inner fibration, j : S ↪→ T an inclusion, t : T → X a simplicial
map, and s := t ◦ j. Then the projection:

p : X/t→ (X/ti)×Y/fs (Y/ft)

is a right fibration.

Proof. By Lemma 4, it suffices to show that every commutative square of the form:

(Λn
k ∗ T ) ∪ (∆n ∗ S) X

∆n ∗ T Y

u f

has a diagonal filler. By the dual of Lemma 4, this is equivalent to showing that every commu-
tative square of the form:

S ∆n/X

T (Λn
k/X)×Λn

k/Y
(∆n/Y )

q

has a diagonal filler. By the dual of Lemma 5, q is a trivial fibration since 0 < k ≤ n. The map
S ↪→ T is a cofibration hence this last square has diagonal filler as needed. �

Corollary 7. Given an inclusion j : S ↪→ T , set s := t ◦ j : T → C, then the induced projection
C/t→ C/s is a right fibration. In particular, if C is a quasicategory then so is the slice C/t for any map
t : T → C.
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Proof. Setting Y = ∆0 in Theorem 6 we deduce the first statement. Setting S = ∅ and C = X

the right fibration p is the projection C/t → C, and since C is a quasicategory C/t is also a
quasicategory. �

Corollary 8. Let f : C → D be a map between quasicategories and S ↪→ T an inclusion of simplicial
sets. Then the simplicial set (C/S)×D/S (D/T ) is a quasciategory and the projection p1 : (C/S)×D/S

(D/T )→ C/S is a right fibration.

Proof. Consider the pullback square:

(C/S)×D/S (D/T ) D/T

C/S D/S

p1 q

Then q is a right fibration by Corollary 7. This implies that p1 is a right fibration, which proves
the second statement. Now again by Corollary 7, C/S is a quasicategory so C/S ×D/S D/T is a
quasicategory, since p1 is an inner fibration. �

We are ready to discuss cones and limits.

Definition 9. LetK be a simplicial set and C a quasicategory.

(i) A diagram in C indexed by K is a simplicial map X : K → C.

(ii) A cone overX is a simplicial mapX : KC → C such thatX|K = X , which means that the
following diagram commutes:

K C

KC

X

X

(iii) A universal cone over X is a cone X : KC → C with the property that for all n > 0 and all
Z : ∂∆n ∗K → C such that Z|∆{n}∗K = X there exists an extension:

∂∆n ∗K C

∆n ∗K

Z

Example 10.

(i) A terminal object in a quasicategory C is a limit of the diagram ∅ → C.

(ii) A pullback in a quasicategory C is a limit of a diagram Λ2
2 → C.
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The space of cones over a fixed diagramX : K → C can be identified with the quasicategory
C/X . Let (C/K)univ be the simplicial set spanned by the universal cones in C/X . Then, by
adjunction, the condition for universality of the cones translates to:

∂∆n (C/X)univ

∆n

Corollary 11. In the context above, the simplicial set (C/K)univ is either empty or a contractible Kan
complex. In other words, the limit of a diagram, if it exists, it is unique up to a contractible space of choices.

Let us finish by proving some expected properties of the notions introduced above.

Proposition 12. Given a quasicategory C and a diagram X : K → C, the limits of this diagram are in
correspondence with the terminal objects in C/X .

Proof. A coneX : KC → C corresponds by adjunction to a mapX : ∆0 = ∆0 ∗∅ → C/X , which
is a cone over the empty diagram. Using again the adjunction, universality of X : KC → C as
a limit of X corresponds precisely to universality of X : ∆0 ∗ ∅ → C/X as a limit of the empty
diagram. �

Proposition 13. Given a quasicategory C and a vertex x the identity map Idx is terminal in C/x.

To prove this we need a theorem from Karol’s talk. Recall that an outer horn x : Λn
n → X

(with n > 1) in a simplicial set X is special if the edge x|∆{n,n+1} is an equivalence.

Theorem 14. In a quasicategory any special horn can be filled. �

Proof of Proposition 13. Given a lifting problem:

∂∆n C/x

∆n

Z

with Z|∆{n} = Idx we consider its adjoint problem:

∂∆n ∗∆0 C

∆n ∗∆0

Z

Notice that the vertical map is the inclusion Λn+1
n+1 ↪→ ∆n+1, then by the above theorem it is

enough to show that Z is a special horn. But by construction we have Z|∆{n,n+1} = Idx, so we
are done. �
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