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Why simplicial type theory?

Open problem: Can we define & develop the theory of (0o, 1)-categories in (book) HoTT?
Can we define the type of semi-simplicial types?

® If we can, it'll likely be a rather complicated construction, and it will be useful to have a
DSL (domain specific language) in order to reason practically with (0o, 1)-categories.

® If we can't, it'll still be nice to have a synthetic type theory (DSL) to use until we settle
on the proper extension of HoTT. (Maybe Two-level type theory?)

A DSL: Simplicial type theory (Riehl-Shulman: A type theory for synthetic co-categories)

Related work: Harper—Licata, Warren, Nuyts, Licata—Weaver, Cavallo—Riehl-Sattler,
Riehl-Verity, Cisinski, North, ...
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Why (co)cartesian families?

RS defined covariant and contravariant families, representing copresheaves and presheaves over
a base category B, i.e., co-/contravariant functors P : B — Space.

Here, we study (co)cartesian families, representing co-/contravariant functors P : B — Cat.

These can model the higher-categorical versions of Mod : Ring — Cat and
Vect : Mfld — Cat, for example.

Another use: symmetric monoidal (co, 1)-categories are cocartesian families over the category
of finite pointed sets, Fin,.

They are also a crucial stepping stone toward defining the universe Cat itself.



Outline

1 Simplicial Type Theory



Simplicial Type Theory

The simplest simplicial type theory: Postulate: \
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A strict interval is a totally ordered set with distinct top and bottom elements.

Indeed, the 1-topos of simplicial sets is the classifying 1-topos for the theory of strict intervals.

In particular, the square 2 x 2 is obtained by gluing together two 2-simplices
A= {(2,y):2x 2|y <z}

As a consequence, we can define connection maps A,V : 2 X 2 — 2.



More shapes; hom-types

We can (uniformly) define the simplices A" = {(z1,...,2,) : 2" |0 <z, < .-+ <y <1},
the horns A} and the boundaries A™, along with the embeddings A} — OA™ — A™.

Given a type B with elements b, b’ : B, we define the type of arrows from b to b’ by
(b —p ) :=homp(b,bv) = Z (u0=">)x (ul=1"").

u:2—B

More generally, we can introduce the extension type as an abbreviation for extensions, given
12—V AV U, a:[],.4Alix):

L A@[H= Y (a=rei e
7 LA H

(This is a primitive type former in RS, using the shape+tope machinery.) @ H\



Dependent arrows

Given a type family P : B — U and an arrow u : hompg(b,b’) in the base, and elements
e: P(b) and ¢’ : P(V'), the type of arrows from e to e’ over f is defined by:

e=fe)i= > (fo=l e)x
f:Ht:z P(ut)

This is simply the type of lifts in the square (E := )", , P
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Segal types \— /3'
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The Segal types are the local types wrt the horn inclusion A? < A2, That is, B is Segal if the
restriction map
(A = B) = (A? — B)

is an equivalence. The Segal types form a reflective subuniverse.

The Segal types in simplicial spaces model pre-(co, 1)-categories, or equivalently, flagged
(00, 1)-categories.
(I
Associativity follows. Question: In this setting, can we derive the uniform Segal condition, i.e.,
locality wrt to the spine inclusions Sp™ — A", for all n : N?



Isomorphisms

An arrow [ :a — b in a Segal type B is a (categorical) isomorphism if the following
proposition(!) holds:

islso(f) == > Y (hf =ida) x (fg = idy).

g:b—a h:b—a

The type of isomorphisms a ~g b := Zf:aﬁBbisIso(f) is equivalent to the mapping type
E — B, where E is the colimit of the diagram:

1/A1Y‘A2yAIY‘A2yA1\1 m



Rezk types

Fix a Segal type B. Then B is a Rezk type iff it is E-null, i.e., the map B — (E — B) is an
equivalence.

Equivalently, B is (k : 1 — E)-local, for either &k =0, 1.

Rezk types are our internal (oo, 1)-categories. (Univalent pre-(oo, 1)-categories, flagged
(00, 1)-categories where the flag contracts away.)

A type is discrete if it is A'-null. Discrete types are Rezk, and model co-groupoids.
Yy



The Yoneda Lemma

A family/map 7 : E — B is covariant (contravariant) if it is right orthogonal to 0: 1 < Al
(1:1 < A,

Yoneda Lemma (RS)

If B is Segal, b : B, and P : B — U is covariant, then evaluation gives an equivalence:

K\W\(‘o,-\ - ?) = (g(b —pB ) > P(:c)) — P(b).

Dependent version: If B Segal, b: B, P : b/B — U covariant, then evaluation gives

equivalence:
(H II P(;L-.,f)) — P(b,idy)
z:B fib—px [ A
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Directed encode-decode

Remark We have the following analog of the fundamental theorem of identity types:

Observation

Let B be a Segal type, b: B, and let P : B — U be a covariant family with d : P(b). The
fiberwise map [[..5((b —p x) — P(x)) given by covariance, is a fiberwise equivalence if and
only if (b,d) is initial in " ., P(x). g

h,-"’"» <\0]"th ‘(S ‘\vxv\"\'\k‘\ *\‘.\ 7\(1&(\"})() r‘)
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Inner and Isoinner Families

We say that a map 7 : E — B is inner if it is right orthogonal to the horn inclusion A? «— A2
Note that if B is Segal, then E is Segal iff 7 is inner.
We say that 7 is isoinner if it is in addition E-null.

If B is Rezk, then E is Rezk iff 7 is isoinner.



(Co)-Cartesian Arrows

Let B be a type and P : B — U be an inner family. Let b,0' : B, u:b—pg ¥, and e : PD,
e Pb. Anarrow f: e —E ¢ is a P-cocartesian arrow if and only if the following proposition

holds:
isCocartArrp f := H H isContr ( <H<t75>:A2 Po(t, s) f\fgh]> )
U:<A2~>B fé> h:Ht:A] Po(t,t)
.
We say that f is a P-cocartesian liftaf u starting at e. \g\\\/ 'P
£

Lemma If B is Rezk and P is isoinner,
then P-cocartesian lifts are unique.
(The type of them is a proposition.)



A cancellation property

Let 7 : F — B be a map of Rezk types.
If f,g are composable arrows in E, and f is cocartesian,
then g is cocartesian iff go f is.

=7 oyl
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(Co)-Cartesian Families

Let B be Rezk. We say that the isoinner family P : B — U is cocartesian if all cocartesian lifts
exists. (This is a proposition.)

Taking the right endpoint of the lifts gives functoriality maps
P :(b—=pb)— Pb)— PWV)

compatible with composition.

T P



The Chevalley criterion VAL el g et

Theorem &

A map 7 : E — B of Rezk types is cocartesian iff we have a LARI adjunction in:

“ -y y L

\L W | —

Similarly, we give a fibered adjunction criterion.

Corollary (Co)cartesian maps are closed under dependent product (hence exponentiation),
composition and pullback. The domain map 9 : BA' =5 B is cartesian and is cocartesian if B

has pushouts; dually, the codomain map 0 : BA" 5 Bis cocartesian and is cartesian if B has
pullbacks.
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A 2-Yoneda Lemma

Yoneda Lemma (Dependent version)

Let B be a Rezk type with initial object b, and let P : B — U be cocartesian. Then evaluation

at b induces an equivalence " %
cocart
evy : ( 11 P(x)) — P(b)
)

Here we take the subtype of cocartesian sections, i.e., those mapping arrows to cocartesian
arrows.

Corollary

Let B be a Rezk type, b : B any element, and ) : B — U cocartesian. Then evaluation at id,,
gives an equiva/ence:

T » Q cocart % Q
\ } = (b/B_>c0(drtQ (H Qul) () l"/@ "_"B-_"

h
u:b/B " bhom(s, -) cort. foum



A 2-Yoneda Lemma, Proof

Define LARI y : P(b) — TS5 P(x) as follows:
A%
W ° TR giw=hb 4

S / & LY
/ gs&&: %X —C

x: Qﬁ{i > \56\

th
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A 2-Yoneda Lemma, Proof continued
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® Bring in cohesion: Free co-/contravariant families, flat (Conduché) maps, descent?

A\ ® Bring in cubical exolayer: Universes Space and Cat, univalent?

‘9 ® Bring in more modalities, op and tw. The naive Yoneda lemmas. T T';?—’ Sﬁ‘“
‘Q‘;\b * . \nom ?;?—’&—‘u

® What structure/axioms would be sufficient to get a foundational system, not just a DSL?
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