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Introduction

In his PhD thesis, Brunerie contructed a number n s.t.
74(S3) = Z/nZ

He then proved that n = +2, thereby also showing that
74(S%) =2 7./27.

Proving that n = £2 should not be necessary — everything is
constructive, so we should be able to simply compute n by
plugging it into our favourite proof assistant

Not that easy...

But n is still constructively defined. Maybe if we unfold its
definition enough, we should be able to deduce n = £2 by
simply staring at it.

In this talk, | will present such a proof



Suspensions

Definition 1 (Suspensions)

The suspension of a type A, denoted XA, is given by the following
HIT

A—— 1
e north,south : A J’ %& J’south
® merid ;: A — north = south 1 " A

north



Spheres

Definition 2 (The circle)
We define the circle S! by the HIT
® base: S!

® |oop : base = base

Definition 3 (Spheres)
For n > 1, we define the n-sphere by (n — 1)-fold suspension of St,
i.e.

S":=xist



Suspension maps

For a pointed type A, there is a canonical map

o A= Q(TA)

:=(north = north)
given by
o(a) = merid(a) - merid (x4)
In particular, when A =S", we get

o:S"— Qs



Joins

Definition 4 (Joins)

The join of two types A and B, denoted A x B, is given by
®inl:A— AxB
®infr:B—AxB
® push: ((a,b) : Ax B) — inl(a) = inr(b)

AxB — B



Joins

® There is a very useful way to construct maps Ax B — C out
of maps Ax B — QC.

Definition 5
Let f : Ax B — QC. Define 1 : Ax B — C by

tr(inl(a)) = *¢
te(inr(b)) = *¢
ap,,(push(a, b)) = f(a, b)

® We note that functions f, g : Ax B — QC can be ‘composed’:

(f : g)(av b) = f(av b) : g(aa b)

e Q: is there a way of saying that ¢ is a ‘homomorphism’ i.e.
Lfg = Lf T Lg?



An ad hoc construction

e A: yes, if A and B are reasonable.
® Recall, m,(A) := [|S" =« Al

Definition 6
For a pointed type A, define 7, .1 (A) = [|S" *S™ —. All,



An ad hoc construction

e A: yes, if A and B are reasonable.
® Recall, m,(A) := [|S" =« Al

Definition 6
For a pointed type A, define 7, .1 (A) = [|S" *S™ —. All,

Theorem 7
There is a group structure on w1 (A) such that

® Thymi1(A) = Tnime1(A)
® Forf,g:S"xS™ = QA, we have tr.g = tr + 1



An ad hoc construction

e A: yes, if A and B are reasonable.
® Recall, m,(A) := [|S" =« Al

Definition 6
For a pointed type A, define 7, .1 (A) = [|S" *S™ —. All,

Theorem 7
There is a group structure on w1 (A) such that

® Trimi1(A) = Tppmia(A)

® Forf,g:S"xS™ = QA, we have tr.g = tr + 1

e Disclaimer: Formalisation only for n=m =1 and A
1-connected. (only case we'll use)



St«St~§3

® Here is a particularly important example of the t-construction.
e There is a canonical map —: St x S — §2.
e Composing it with o gives us (0o —): S! x S — QS3
® Define F = (5o : St+St — 83
Proposition 8
F is an equivalence, and (_ o F1): 75(A) = 713(A)
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The Hopf Map and the Brunerie Map

e Define h, 5 : St x ST — QS? by

h(x,y) = o(y — x)
B(x,y) =oa(y) o(x)

® Above, the subtraction comes from the group structure on S*

® The induced maps ¢4, t3 : St % St — S? are called the Hopf
map and the Brunerie Map respectively.
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Brunerie's First Theorem

® By precomposition with F~1 : S3 — S?, we get two
corresponding elements ¢}, (3 : m3(S?).
® Fact: m3(S?) = Z and is generated by £},
Theorem 9 (Brunerie 16)
74(S%) = Z/nZ where n is the integer s.t.

N

n-ip=10p

e We will attempt to solve this equation directly. | claim that
n = —2 is the solution.



Proof sketch

® |n order to show that n = —2, we would like to show that

bh+ 0 = —0p

(tho F )4+ (thoF )= (o FY)

® With our 73 construction, the above can be rewritten to
something much nicer:

(th +th) o Fl= (—tg)o Fi



Proof sketch

¢ |dea for the rest of the proof: keep rewriting the above
equation by passing it through the sequence of isomorphisms

(eho

ry(8?) =5 my(s?) L2 r (st e sty 2o mz(s?)

® When we reach 735(S?), the equation will have turned into
something cute!



Step 1

] LKO -1 [e]
73(52) =T 7(s?) L0 pxst e sty Boms ni(s?)
YOU

Applying the highlighted isomorphism above reduces our old
equation (in m3(S?))

(th+1p)o Fl= (—tp) 0 F!
to the following equation in 73(S?)

Lh T th = —Lg



Step 2

0. LKHO -1 [e]
73(52) =T (7)) 0= pxst sty Boms nz(s?)
YOU

We would like to rewrite our equation to an equation in

75(St % St) via the highlighted isomorphism.

To this end, we construct two maps in f,g : St * ST — S! x S?
s.t.

thof = up+tp
LhOg:Lg

f is given by id + id

g has a somewhat more complicated construction



Step 2

0. LKHO -1 [e]
73(52) =T (7)) 0= pxst sty Boms nz(s?)
YOU

® Define g : S? St — St « St by

g(inl(x)) = inr(—x)
g(inr(y)) = inr(y)
apg(push(x, y)) = push(y — x, —x) ' - push(y — x, y)

® It is very direct to verify that 10 g = 13



Step 3

O. LRO -1 )
13(52) =T 7(s?) 0= prst sty Boms ni(sY)

YOU
ARE
HERE

® So we have new equation in 73(St % S!):
id+id=—g

® Let's apply the highlighted isomorphism to (id + id) and g.
® For the LHS: we have, trivially,

Fo(d+id)=F+7F



Step 3

O. LRO -1 )
13(52) =T 7(s?) 0= prst sty Boms ni(sY)

YOU
ARE
HERE

Proposition 10
Fog=(-F)+(-F)

Proof.
Using the fact that F is just ¢(5o_) and the homomorphism
property of ¢, the proof boils down to proving

—((y =x) = (=x)) = —(x — y)
(y=—x)—y=—-(x—y)

which is easy.



Final step

0. LKO -1 [e]
13(52) =T 7(s?) L0 st sty Boms ni(sY)

YOU
ARE
HERE

® So we are reduced to verifying
F4F=—((-F)+(-F))

which, of course, is trivial.
e Combining all the steps, we have shown:

Theorem 11
The Brunerie number (with our definition) is —2.



Concluding remarks

® Paired together with chapters 1-3 in Brunerie's thesis, the
above theorem allows us to conclude

Theorem 12
m4(S3) = 7/27
e Cool things about this:

® Much shorter than Brunerie's original proof (skips chapters
4-6)
® Does not use (co)homology
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theorem and Eckmann-Hilton.
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Concluding remarks

® Ignoring chapters 1-3, we also get a short, standalone proof of
the following fact

Theorem 13
If 74(S3) is non-trivial, then 74(S%) = 7 /27.

® The proof only uses |n| = 2, the Freudenthal suspension
theorem and Eckmann-Hilton.

® |n particular, an easy corollary is the following:

Theorem 14
IfYCP? £ S3 VS5, then m4(S3) = Z/27.
® Proving YCP? % S3 V' S® can be done using Steenrod squares
(WIP, joint with David Warn)

e But a direct proof, not relying on cohomology would be
amazing (suggestions?)



Future work

® Prove YCP? % S3 v S® to complete the new proof of
74(S3) =2 Z/27

® The Brunerie map is an example of a ‘Whitehead product'’:
[, ] ma(X) x Tm(X) = Tagm-1(X)

These play an important role in the computation of the
homotopy groups of spheres. The methods used here could
possibly be mimicked for other Whitehead products too.



