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MULTIQUADRATIC EXTENSIONS, RIGID FIELDS AND
PYTHAGOREAN FIELDS

DAVID B. LEEP and TARA L. SMITH

Abstract

Let F be a field of characteristic other than 2. Let F (2) denote the compositum over F of all quadratic
extensions of F , let F (3) denote the compositum over F (2) of all quadratic extensions of F (2) that are
Galois over F , and let F{3} denote the compositum over F (2) of all quadratic extensions of F (2). This
paper shows that F (3) = F{3} if and only if F is a rigid field, and that F (3) = K(3) for some extension K
of F if and only if F is Pythagorean and K = F(

√−1). The proofs depend mainly on the behavior of
quadratic forms over quadratic extensions, and the corresponding norm maps.

1. Introduction

Let F be a field of characteristic not 2. We consider the Galois extension F (3) of F
obtained by first taking F (2) to be the compositum over F of all quadratic extensions
of F , and then taking F (3) to be the compositum over F (2) of all the quadratic
extensions of F (2) that are Galois over F . We also denote by F{3} the compositum
over F (2) of all quadratic extensions of F (2). Thus F{3} = (F (2))(2).

We shall characterize those fields F with the property that F (3) = F{3}, and we
shall also determine precisely when one can have a field extension K/F for which
F (3) = K (3). In fact, we shall prove the following two theorems.

Theorem A. F (3) = F{3} if and only if F is a rigid field.

Theorem B. Let K/F be a proper extension of fields. The following statements
are equivalent:

(1) F (3) = K (3);

(2) F (2) = K (2);

(3) F is Pythagorean and K = F(
√−1).

Our proofs use only elementary methods from Galois theory. Although Theorem A
is proved in [1, Theorem 3.1 and Definitions 2.2 and 2.3], and Theorem B is proved
in [6, Theorems 3.2 and 3.6 and Corollary 3.7], these earlier proofs rely on a number
of specialized and highly technical results, and are substantially longer than the
proofs in this paper.

To begin with, we recall some notation and develop some useful results concerning
the behavior of quadratic forms under quadratic and multiquadratic extensions of
fields. In the second section, we develop a number of results on rigid elements and
quadratic extensions, and provide a simple new proof that quadratic extensions of
rigid fields remain rigid. In Sections 3 and 4 we prove Theorems A and B cited
above.
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Throughout this paper, fields are assumed to have characteristic other than 2; Ḟ
denotes the multiplicative group of nonzero elements of the field F , DF (q) denotes the
set of nonzero elements represented over F by the quadratic form q, NK/F (α) denotes
the norm in F of an element α ∈ K , and 〈a1, . . . , an〉 denotes the n-dimensional
quadratic form a1x

2
1 + . . .+ anx

2
n.

Definition 1.1. An element a ∈ Ḟ\±Ḟ2 is said to be rigid if DF (〈1, a〉) = Ḟ2∪aḞ2.
The field F is said to be a rigid field (or a C-field) if every a ∈ Ḟ\ ± Ḟ2 is rigid.

Definition 1.2. A field F is Pythagorean if every sum of squares is a square.

Proposition 1.3 (Square class exact sequence [4, Theorem 3.4, p. 202]). Let K =
F(
√
a) be a quadratic extension of the field F . Let ε : Ḟ/Ḟ2 −→ K̇/K̇2 be the map

induced by the inclusion of F in K , and let N : K̇/K̇2 −→ Ḟ/Ḟ2 be the homomorphism
induced by the norm from K to F . Then the following sequence is exact:

1 −→ {Ḟ2, aḞ2} −→ Ḟ/Ḟ2 ε−→ K̇/K̇2 N−→ Ḟ/Ḟ2.

Corollary 1.4. Keeping the notation of Proposition 1.3, the map ε : Ḟ/Ḟ2 −→
K̇/K̇2 is surjective if and only if F is Pythagorean and K = F(

√−1).

Proof. The map ε is surjective if and only if ker(N) = K̇/K̇2, if and only if
DF (〈1,−a〉) = Ḟ2, and if and only if a ∈ −Ḟ2 and every sum of squares in F is a
square. q

The following proposition has appeared in several places; see [7, Lemma 1.14].
The proof by Berman [2, Lemma 3.5] is particularly nice. Here is a different proof.

Proposition 1.5. Let K = F(
√
b). Then

DK (〈1,−a〉) ∩ F = DF (〈1,−a〉)DF (〈1,−ab〉).
Proof. Since the result is trivial if b is a square in F , we may assume that

[K : F] = 2. Let α ∈ DK(〈1,−a〉); so

α = (x+ y
√
b)2 − a(z + w

√
b)2 = x2 + by2 − az2 − abw2 + 2(xy − azw)

√
b

for some x, y, z, w ∈ F . If α ∈ F , then xy − azw = 0. First, assume that x 6= 0,
so y = azw/x. Then α = x2 + by2 − az2 − abw2 = (x2 − az2)(1 − ab(w/x)2). Next,
assume that x = 0. Then either z = 0 or w = 0. If z = 0, then by2 − abw2 =
(w2 − a(y/a)2)(−ab). If w = 0, then by2 − az2 = −a(z2 − ab(y/a)2). In all cases, we
have α ∈ DF (〈1,−a〉)DF (〈1,−ab〉). The reverse inclusion is trivial. q

Proposition 1.6 ([3, Theorem 2.1]). Let L = F(
√
a1, . . . ,

√
an), for ai ∈ Ḟ ,

[L : F] = 2n, where n > 1. Let α ∈ L̇. Then NL/Ki
(α) ∈ K̇2

i for all intermediate
fields Ki ⊇ F with [L : Ki] = 2 if and only if α ∈ ḞL̇2.

Proof. If α ∈ ḞL̇2, then it is clear thatNL/Ki
(α) ∈ K̇2

i . Now assume thatNL/Ki
(α) ∈

K̇2
i for all intermediate fields Ki ⊇ F with [L : Ki] = 2. We prove the result by

induction on n. The case n = 1 is a consequence of the square class exact sequence.
Now assume that n > 2.
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LetK = F(
√
a1, . . . ,

√
an−1); so L = K(

√
an) and [L : K] = 2. We haveNL/K(α) ∈ K̇2,

and so α ∈ K̇L̇2 by the n = 1 case. Without loss of generality, we may take α to
be in K̇ . Let F ⊆ E ⊆ K with [K : E] = 2. Then K = E(

√
b), for b ∈ Ḟ , and

L = E(
√
an,
√
b). We have [L : E(

√
an)] = [L : E(

√
anb)] = 2 and

NK/E(α) = NL/E(
√
an)(α) = NL/E(

√
anb)

(α) ∈ Ė ∩ E(
√
an)

2 ∩ E(
√
anb)

2 = Ė2.

This holds for all [K : E] = 2, where F ⊆ E, and since [K : F] = 2n−1, induction
implies that α ∈ ḞK̇2 ⊆ ḞL̇2. q

For the next two lemmas, the following notation will be in effect. We let L/F
be a finite multiquadratic extension, where [L : F] = 2n > 4, and assume that
F ⊂ F(

√−1) ⊂ L, where ‘⊂’ denotes strict inclusion. We set G = Gal(L/F) and H =
Gal(L/F(

√−1)), and write G = H ∪ τH . Let α ∈ L̇ and assume that L(
√
α)/F(

√−1) is
Galois, where [L(

√
α) : L] = 2. Then we have σ(α) · α ∈ L̇2 for all σ ∈ H .

Lemma 1.7. L(
√
α,
√
τ(α)) is the Galois closure of L(

√
α)/F , and L(

√
τ(α))/F(

√−1) is
Galois.

Proof. The Galois closure of L(
√
α)/F is L({√σ(α) | σ ∈ G}), which equals

L(
√
α,
√
τ(α)), since σ(α) ·α ∈ L̇2 for all σ ∈ H , and τ(α) ·τσ(α) = τ(σ(α) ·α) ∈ τ(L̇2) = L̇2

for all σ ∈ H . Thus σ(α) ≡ α or σ(α) ≡ τ(α) mod L̇2 for all σ ∈ G. For the second
claim, observe that σ(τ(α)) · τ(α) = τ(σ(α) · α) ∈ τ(L̇2) = L̇2 for all σ ∈ H . q

Lemma 1.8. τ(α) · α ∈ ˙
F(
√−1)L̇2.

Proof. Let [L : K] = 2 where F(
√−1)⊆ K⊆ L, and let Gal(L/K) = {1, σK}⊆ H .

Write L = K(
√
b), for b ∈ Ḟ . Then σK (α)·α ∈ K̇∩L2 = K̇2∪bK̇2. Since K/F is Galois

and b ∈ Ḟ , we have τ(K̇2) = K̇2 and τ(bK̇2) = bK̇2. Therefore σK (τ(α) · α)(τ(α) · α) =
τ(σK (α) · α)(σK (α) · α) ∈ K̇2 for every K with [L : K] = 2 and F(

√−1) ⊆ K . Then by

Proposition 1.6 it follows that τ(α) · α ∈ ˙
F(
√−1)L̇2. q

Lemma 1.9. Let M/k be a finite Galois extension, and suppose that there exists a
chain of fields k ⊆ E ⊆ F ⊆ K ⊆ L ⊆M such that the following statements hold:

(1) [L : K] = [K : F] = [F : E] = 2;
(2) L/F is Galois with Gal(L/F) ∼= Z/4Z;
(3) K/E is Galois with Gal(K/E) ∼= Z/4Z.

Then Gal(M/k) contains an element of order 8.

Proof. There exists σ ∈ Gal(M/E) such that σ|K has order 4, since Gal(K/E) ∼=
Z/4Z. Because [Gal(M/E) : Gal(M/F)] = [F : E] = 2, it follows that σ2 ∈
Gal(M/F). Then σ2|L is an element of Gal(L/F), which is not the identity on K

(since σ|K has order 4). Therefore σ2|L is an element of order 4. This implies that
σ|L has order 8. Therefore the order of σ is divisible by 8, and Gal(M/E) (and hence
also Gal(M/k)) contains an element of order 8. q

2. Rigid fields

We prove several general results concerning the preservation of rigidity under
quadratic extensions.
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Proposition 2.1. Let L = F(
√
a,
√
b), [L : F] = 4. If −a and −b are rigid in F ,

then −a and −b remain rigid in F(
√
ab).

Proof. We know that −a /∈ ±Ḟ2 and −b /∈ ±Ḟ2 by the definition of ‘rigid’.

Suppose that −a ∈ ±F(
√
ab)

2
. Then ±a ∈ F(

√
ab)2 ∩ F = F2 ∪ abF2. We know that

±a /∈ F2, and if ±a ∈ abF2, then ±b ∈ F2, a contradiction. Thus −a /∈ ±F(
√
ab)2.

Let A ∈ DF(
√
ab)(〈1,−a〉). Then A = NL/F(

√
ab)(α) for some α ∈ L̇. Then

NL/F (α) = NF(
√
a)/F (NL/F(

√
a)(α)) ∈ DF (〈1,−a〉) = Ḟ2 ∪ −aḞ2,

NL/F (α) = NF(
√
b)/F (NL/F(

√
b)(α)) ∈ DF (〈1,−b〉) = Ḟ2 ∪ −bḞ2.

Thus NL/F (α) ∈ (Ḟ2 ∪ −aḞ2) ∩ (Ḟ2 ∪ −bḞ2) = Ḟ2. It follows that

NF(
√
ab)/F (A) = NF(

√
ab)/F (NL/F(

√
ab)(α)) = NL/F (α) ∈ Ḟ2.

This implies that A = cB2, where c ∈ Ḟ and B ∈ F(
√
ab). Then Proposition 1.5

implies that

c ∈ DF(
√
ab)(〈1,−a〉) ∩ Ḟ = DF (〈1,−a〉) · DF (〈1,−b〉)

= (Ḟ2 ∪ −aḞ2)(Ḟ2 ∪ −bḞ2)

= Ḟ2 ∪ −aḞ2 ∪ −bḞ2 ∪ abḞ2

⊆ ˙
F(
√
ab)

2 ∪ −a ˙
F(
√
ab)

2

.

This shows that DF(
√
ab)(〈1,−a〉) =

˙
F(
√
ab)

2 ∪ −a ˙
F(
√
ab)

2
, and hence −a is rigid in

F(
√
ab). By symmetry (or by observing that (−a)(−b) ∈ F(

√
ab)2), we see that −b is

also rigid in F(
√
ab). q

Corollary 2.2. Let F be a rigid field, and let K = F(
√
d), where [K : F] = 2.

Let a ∈ Ḟ , and assume that a /∈ ±K̇2. Then a is rigid in K .

Proof. Since [K : F] = 2, we know that d /∈ Ḟ2, and since a /∈ ±K̇2, we have
a /∈ Ḟ2 ∪ −Ḟ2 ∪ dḞ2 ∪ −dḞ2. We now check the hypotheses of Proposition 2.1,
substituting −a for a and −ad for b. We see that [F(

√−a,√−ad) : F] = 4, because
−a /∈ Ḟ2 and −ad /∈ Ḟ2 ∪ −aḞ2. Since a /∈ ±Ḟ2 and ad /∈ ±Ḟ2, the rigidity of F
implies that a and ad are rigid in F . Now, by Proposition 2.1, a is rigid in F(

√
d). q

Proposition 2.3. Suppose that a is rigid in F , and that −1 /∈ Ḟ2. If we have
DF (〈1, 1〉) ⊆ F2 ∪ −F2, then DF(

√
a)(〈1, 1〉) ⊆ F(

√
a)

2 ∪ −F(
√
a)

2
.

Proof. The proof is analogous to that for Proposition 2.1, replacing a with −1
and b with −a. Since a /∈ ±Ḟ2 and −1 /∈ Ḟ2, it follows that [F(

√−1,
√−a) : F] = 4.

Let L = F(
√−1,

√−a), and let A ∈ DF(
√
a)(〈1, 1〉). Then A = NL/F(

√
a)(α) for some

α ∈ L̇.
As before,

NL/F (α) = NF(
√−1)/F (NL/F(

√−1)(α)) ∈ DF (〈1, 1〉) ⊆ F2 ∪ −F2,

NL/F (α) = NF(
√−a)/F (NL/F(

√−a)(α)) ∈ DF (〈1, a〉) = Ḟ2 ∪ aḞ2.

Thus

NL/F (α) ∈ (F2 ∪ −F2) ∩ (Ḟ2 ∪ aḞ2) = Ḟ2.
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It follows that NF(
√
a)/F (A) = NL/F (α) ∈ Ḟ2, and this implies that A = cB2, where

c ∈ Ḟ and B ∈ F(
√
a). Then Proposition 1.5 implies that

c ∈ DF(
√
a)(〈1, 1〉) ∩ F = DF (〈1, 1〉) · DF (〈1, a〉)

⊆ (F2 ∪ −F2)(F2 ∪ aF2)

= F2 ∪ aF2 ∪ −F2 ∪ −aF2

⊆ F(
√
a)

2 ∪ −F(
√
a)

2
.

Therefore, DF(
√
a)(〈1, 1〉) ⊆ F(

√
a)

2 ∪ −F(
√
a)

2
. q

Remark 2.4. If F is a rigid field with −1 /∈ Ḟ2, then DF (〈1, 1〉) ⊆ Ḟ2 ∪ −Ḟ2. For
if b ∈ DF (〈1, 1〉), then 〈1, 1〉 ' 〈b, b〉, and so 〈1,−b〉 ' 〈 − 1, b〉. If b /∈ ±Ḟ2, then
−b is rigid and DF (〈1,−b〉) = Ḟ2 ∪ −bḞ2. This then implies that b ∈ Ḟ2 ∪ −bḞ2, a
contradiction.

The following result has been proved by Ware [8], using different methods. The
proof that we give here uses only the square class exact sequence and the elementary
results on preservation of rigidity under quadratic extensions proved above. A
2-extension of F is a field obtained from F by a sequence of quadratic extensions.

Theorem 2.5. Let F be a rigid field. Then every 2-extension of F is rigid.

Proof. It suffices to show that every quadratic extension of a rigid field is rigid.
Let K = F(

√
d) be a proper quadratic extension of F . If d /∈ ±Ḟ2, then −d is rigid

in F and DF (〈1,−d〉) = Ḟ2 ∪ −dḞ2. If d ∈ −Ḟ2, then −1 /∈ Ḟ2, and it follows that
DF (〈1, 1〉) ⊆ Ḟ2 ∪ −Ḟ2 by Remark 2.4. Thus, in either case, the square class exact
sequence gives | imN| 6 2. This implies that

|K̇/ḞK̇2| = |(K̇/K̇2)/im ε| = |(K̇/K̇2)/kerN| = | imN| 6 2.

Let α ∈ K̇ , but α /∈ ±K̇2. We shall show that α is rigid in K .
If α ∈ ḞK̇2, then α = aγ2, where a ∈ Ḟ and γ ∈ K̇ . Since a /∈ ±K̇2, Corollary 2.2

implies that a (and hence α) is rigid in K . Thus if K̇ = ḞK̇2, then K is rigid.
Now assume that α /∈ ḞK̇2. Then K̇ = ḞK̇2∪αḞK̇2, with α /∈ ±K̇2. We must show

that DK (〈1, α〉) = K̇2 ∪ αK̇2. Let β ∈ DK (〈1, α〉).
First, suppose that β ∈ ḞK̇2. We may assume β = b ∈ Ḟ . If −b /∈ ±K̇2, then

−b is rigid in K by Corollary 2.2. Hence −α ∈ DK (〈1,−b〉) = K̇2 ∪ −bK̇2 ⊆ ḞK̇2,
contradicting our assumption. Therefore −b ∈ ±K̇2. If b ∈ K̇2, we have finished, so
we may assume that −b ∈ K̇2 with −1 /∈ K̇2. Then d /∈ ±Ḟ2, so d is rigid in F . We
have −α ∈ DK (〈1,−b〉) = DK (〈1, 1〉) ⊆ K̇2 ∪−K̇2 by Proposition 2.3. But this means
that α ∈ ḞK̇2, again giving a contradiction.

Now suppose that β /∈ ḞK̇2. Then β ∈ αḞK̇2, and we can assume that β = bα,
for b ∈ Ḟ . Since bα = β ∈ DK (〈1, α〉), it follows that b ∈ DK (〈1, α〉). The argument
above then implies that b ∈ K̇2, so β = bα ∈ αK̇2. Thus DK (〈1, α〉) ⊆ K̇2 ∪ αK̇2 for
all α ∈ K̇ , where α /∈ ±K̇2. This implies each such α is rigid in K , and so K is a rigid
field. q

3. Proof of Theorem A

We prove the forward direction of Theorem A in Theorem 3.1, and the reverse
direction in Theorem 3.3.
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Theorem 3.1. If F (3) = F{3}, then F is a rigid field.

Proof. Assume that F (3) = F{3}. Then for all α ∈ F (2), F (2)(
√
α) is Galois over F .

Thus for all σ ∈ Gal(F (2)/F), σ(α) · α ∈ (F (2))2. Choose a, b ∈ Ḟ\Ḟ2, independent
mod Ḟ2, with a /∈ −Ḟ2. We must show that b /∈ DF (〈1, a〉). Choose σ ∈ Gal(F (2)/F)
such that σ(

√
a) =

√
a and σ(

√
b) = −√b, and let K be the fixed field of σ. Then

F (2) = K(
√
b) and

√
a ∈ K .

Since a /∈ −Ḟ2, we observe that
√
a /∈ (F (2))2, for otherwise F(

√−1, 4
√
a) ⊆ F (2) and

F(
√−1, 4

√
a)/F(

√−1) would be a cyclic quartic extension, which is impossible.
Suppose that b ∈ DF (〈1, a〉). Then there exist x, y, z ∈ F , not all zero, such that

x2 + ay2 − bz2 = 0. Let α = x+ y
√
a+ z
√
b. Then

0 6= σ(α) · α = x2 + ay2 − bz2 + 2xy
√
a = 2xy

√
a ∈ (F (2))2.

Since F ⊆ (F (2))2, it follows that
√
a ∈ (F (2))2, a contradiction. q

Lemma 3.2. If K is a finite multiquadratic extension of a rigid field F and
√−1 ∈ K ,

then every quadratic extension of K is Galois over F .

Proof. Let α ∈ K , and let K(
√
α) be a quadratic extension of K . We must show

that σ(α) · α ∈ K2 for all σ ∈ Gal(K/F). This is trivially true if σ = 1.
Let 1 6= σ ∈ Gal(K/F), and let E be the fixed field of σ. Then K = E(

√
a) for some

a ∈ Ḟ , and σ(α) · α ∈ DE(〈1,−a〉). We shall show that DE(〈1,−a〉) ⊆ Ė2 ∪ aĖ2 ⊆ K̇2.
Since E is a 2-extension of F , Theorem 2.5 implies that E is a rigid field. If −1 ∈ Ė2,
then a /∈ ±Ė2, and DE(〈1,−a〉) = DE(〈1, a〉) = Ė2 ∪ aĖ2 by the rigidity of E. If
−1 /∈ Ė2, we may take a = −1 since −1 ∈ K̇2. Since E is rigid, Remark 2.4 implies
that DE(〈1, 1〉) ⊆ Ė2 ∪ −Ė2. q

Theorem 3.3. If F is a rigid field, then F (3) = F{3}.

Proof. We must show that F (2)(
√
α)/F is a Galois extension for all α ∈ F (2). Let

K = F(
√−1, α) ⊆ F (2). Then K is a finite multiquadratic extension of F containing√−1, and hence Lemma 3.2 implies that K(

√
α)/F is a Galois extension. Since

F (2)/F is a Galois extension, it follows that F (2)(
√
α)/F is a Galois extension. q

Corollary 3.4. Assume that F (3) = F{3}. Then K (3) = K{3} for any 2-extension
K of F .

Proof. This follows immediately from Theorems 3.1, 2.5, and 3.3. q

4. Proof of Theorem B

Observe first that if F is Pythagorean and K = F(
√−1), then Corollary 1.4

implies that F (2) = K (2). Conversely, suppose that F (2) = K (2). Then K is a proper
multiquadratic extension of F , and the induced map ε : Ḟ/Ḟ2 −→ K̇/K̇2 is surjective.
Let F ⊆ E ⊆ K where [K : E] = 2. Then the map Ė/Ė2 −→ K̇/K̇2 is surjective, and
Corollary 1.4 implies that E is Pythagorean and K = E(

√−1). But F (2) ⊆ E(2) ⊆ K (2),
and so F (2) = E(2). If F 6= E, the same reasoning would show that −1 ∈ E2, a
contradiction. Therefore F = E, and so F is Pythagorean and K = F(

√−1). We have
now proved the equivalence of conditions (2) and (3) of Theorem B. Theorems 4.2
and 4.3 below give the equivalence of conditions (1) and (3) of Theorem B.
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Lemma 4.1. Gal(F (3)/F) has exponent at most 4.

Proof. Let σ ∈ Gal(F (3)/F). Then σ2 ∈ Gal(F (3)/F (2)) since σ2 fixes all square
roots of elements in F . Since Gal(F (3)/F (2)) has exponent at most 2, it follows that
Gal(F (3)/F) has exponent at most 4. q

Theorem 4.2. Assume that F is Pythagorean, and that K = F(
√−1). Then

F (3) = K (3).

Proof. We may assume that K 6= F . Clearly, F (3) ⊆ K (3), and the hypothesis
implies that F (2) = K (2), by Corollary 1.4. Suppose that α ∈ Ḟ (2) with F (2)(

√
α)/K

Galois. We need to show that F (2)(
√
α)/F is Galois. In other words, we must see that

σ(α) · α ∈ (F (2))2 for all σ ∈ Gal(F (2)/F). But (F (2))2 = F(F (2))2 = F(
√−1)(F (2))2 (by

Corollary 1.4), so it is sufficient to show that σ(α) · α ∈ F(
√−1)(F (2))2.

Let L = F(α,
√−1), so L ⊆ F (2) is a finite multiquadratic extension of F . If

[L : F] = 2, then α ∈ F(
√−1), so σ(α) · α ∈ F(

√−1) for all σ ∈ Gal(F (2)/F), and we
have finished in this case. Otherwise [L : F] > 4, and we can apply the results of
Lemmas 1.7 and 1.8 above to conclude that σ(α) · α ∈ F(

√−1)L2 ⊆ F(
√−1)(F (2))2 for

all σ ∈ Gal(F (2)/F). q

Theorem 4.3. Let K/F be a proper extension of fields for which F (3) = K (3). Then
F is Pythagorean and K = F(

√−1).

Proof. We first reduce the statement to the case where K is a quadratic extension
of F . Since K ⊆ F (3), there exists a quadratic extension F ⊆ F(

√
a) ⊆ K . Since

F (3) ⊆ F(
√
a)(3) ⊆ K (3) = F (3), it follows that F (3) = F(

√
a)(3). Suppose that we can

show that this implies that F is Pythagorean and a ∈ −Ḟ2. Since F(
√
a)(3) = K (3), the

same reasoning would imply that K cannot be a proper extension of F(
√
a), and so

K = F(
√
a). We now show that if either a /∈ −Ḟ2 or F is not Pythagorean, we can

produce an extension of K which is in K (3) but not in F (3).

First, suppose that K = F(
√
a), [K : F] = 2, and assume that a /∈ −Ḟ2. Let f(x) =

x8 − a ∈ F[x]. If 8
√
a denotes an arbitrary root of f(x), then M = F( 8

√
a,
√−1,

√
2) is

a splitting field of f over F . Consider the following tower of extensions:

F ⊆ F ′ = F(
√−1) ⊆ F ′(√a) ⊆ F ′( 4

√
a) ⊆ F ′( 8

√
a) ⊆M.

We have [F ′(
√
a) : F ′] = 2 since

√
a ∈ F(

√−1) would imply that a ∈ Ḟ2∪−Ḟ2, contrary
to the assumption. Since x2− a is irreducible over F ′, it follows that both x4− a and
x8 − a are irreducible over F ′ [5, Theorem 9.1, p. 297]. Therefore [F ′( 4

√
a) : F ′] = 4

and [F ′( 8
√
a) : F ′] = 8. We have Gal(F ′( 4

√
a)/F ′) ∼= Z/4Z, since

√−1 ∈ F ′. Also,

Gal(F ′( 8
√
a)/F ′(

√
a)) ∼= Z/4Z, since 8

√
a = 4

√√
a and

√−1 ∈ F ′(√a). Since M/F is a
Galois extension, Lemma 1.9 shows that Gal(M/F) contains an element of order 8.

Thus M * F (3) by Lemma 4.1, but M = K( 4
√√

a,
√−1,

√
2) ⊆ K (3).

Now suppose that K = F(
√−1), that [K : F] = 2, and that F is not Pythagorean.

Then there exists β ∈ K such that ββ̄ = a /∈ Ḟ2, where β̄ = σ(β) and 〈σ〉 = Gal(K/F).

Let f(x) = (x4 − β)(x4 − β̄) ∈ F[x]. Then M = F(
√−1, 4

√
β,

4
√
β̄) is a splitting field

of f over F . Observe that
√
a =
√
β
√
β̄ ∈ M and

√−a =
√−1
√
a ∈ M. Consider the

following tower of extensions:

F ⊆ F ′ = F(
√−a) ⊆ K ′ = F(

√−1,
√
a) ⊆ K ′(√β) ⊆ K ′( 4

√
β) ⊆M.
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We have [K ′ : F ′] = 2, since
√−1 ∈ F(

√−a) would imply that −1 ∈ Ḟ2 ∪ −aḞ2,
but −1 /∈ Ḟ2 and a /∈ Ḟ2. Also, [K ′(

√
β) : K ′] = 2, since

√
β ∈ K ′ = K(

√
a) would

imply that β ∈ K̇2 ∪ aK̇2, which would in turn imply that a = ββ̄ ∈ Ḟ2 ∪ a2Ḟ2 =
Ḟ2, but a /∈ Ḟ2. Since x2 − β is irreducible over K ′, it follows that x4 − β is
irreducible over K ′ (again by [5, Theorem 9.1, p. 297]). Therefore [K ′( 4

√
β) : K ′] = 4

and K ′( 4
√
β)/K ′ is Galois with Gal(K ′( 4

√
β)/K ′) ∼= Z/4Z. Since [K ′(

√
β) : F ′] = 4,

K ′ = F ′(
√
a) = F ′(

√−1), and NK ′/F ′ (β) = a, it follows that K ′(
√
β)/F ′ is Galois with

Gal(K ′(
√
β)/F ′) ∼= Z/4Z. Since M/F is a Galois extension, Lemma 1.9 again implies

that Gal(M/F) contains an element of order 8. This implies that M * F (3) by

Lemma 4.1, but M ⊆ K (3) since K( 4
√
β)/K and K( 4

√
β̄)/K are both cyclic quartic

extensions. q

We finish with two propositions that sharpen Lemma 4.1. Recall that a field F is
Euclidean if F is formally real and |Ḟ/Ḟ2| = 2.

Proposition 4.4. The following statements are equivalent:
(1) Gal(F (3)/F) has exponent 2;
(2) F admits no Galois extension with Galois group isomorphic to either Z/4Z or

D4, the dihedral group of order 8, but F is not quadratically closed;
(3) F is Pythagorean and |Ḟ/Ḟ2| = 2;
(4) F is Euclidean;
(5) −1 /∈ F2 and F (2) = F(

√−1) is quadratically closed;
(6) Gal(F (3)/F) ∼= Z/2Z;
(7) F (2) = F (3) and F is not quadratically closed.

Proof. (3)⇒ (4). If F were nonreal, then every element of F would be a sum of
squares, and hence a square. That would imply that |Ḟ/Ḟ2| = 1, a contradiction.

(4) ⇒ (3). We must have F = F2 ∪ −F2. Thus a2 + b2 ∈ F2 for all a, b ∈ F since
a2 + b2 cannot be negative. Therefore F is Pythagorean.

(3) ⇒ (5). Since F must be formally real, we have −1 /∈ F2, and thus F (2) =
F(
√−1). Apply Corollary 1.4 with K = F(

√−1) to conclude that F(
√−1) is quadrat-

ically closed.
(5) ⇒ (6). Since F (2) = F(

√−1) is quadratically closed, we have F (3) = F (2), and
thus [F (3) : F] = 2.

(6) ⇒ (7). We have F ⊆ F (2) ⊆ F (3) and [F (3) : F] = 2. Since F cannot be
quadratically closed, we must have F (2) = F (3).

(7)⇒ (1). Gal(F (3)/F) = Gal(F (2)/F), and the latter group has exponent 2.
(1) ⇒ (2). If Gal(L/F) is isomorphic to either Z/4Z or D4, then L ⊆ F (3).

But Gal(L/F) is a homomorphic image of Gal(F (3)/F), and hence cannot have
exponent 4.

(2) ⇒ (3). Let K be any quadratic extension of F , and suppose that L is a
quadratic extension of K . Let E/F be a Galois closure of L/F . The hypothesis on F
implies that E = L and Gal(L/F) ∼= Z/2Z×Z/2Z. Since every quadratic extension
of K comes from F , it follows that the map Ḟ/Ḟ2 → K̇/K̇2 is surjective. Corollary
1.4 implies that F is Pythagorean and K = F(

√−1). Since K is uniquely determined,
it follows that |Ḟ/Ḟ2| = 2. q

Proposition 4.5. The following statements are equivalent:
(1) Gal(F (3)/F) has exponent 1; that is, F (3) = F;
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(2) F (2) = F;
(3) F is quadratically closed.

Proof. (1)⇒ (2). This follows from F ⊆ F (2) ⊆ F (3).
It is obvious that statements (2) and (3) are equivalent.
(2)⇒ (1). This follows from F ⊆ F (3) ⊆ F{3} = (F (2))(2) = F (2) = F . q
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