David Stanford

Office: WSC 211
Phone: 519-661-2111 x83612
Email: stanford@uwo.ca


Ph.D. Carleton University, 1981


  • Stanford, D. A. and Li, N. (2016). Multi-server accumulating priority queues with heterogeneous servers. European Journal of Operational Research, 250 (3): 866-878.
  • Stanford, D. A., Murdoch, D. J. and Xiong, Y. (2015). Perfect sampling of a single-server queue with periodic Poisson arrivals. Queueing Systems, 80(1-2): 15-33.
  • Stanford, D. A., Boucherie, R. J., Carter, M. W. and Zonderland, M. E. (2015). Modeling the effect of short stay units on patient admissions. Operations Research for Health Care, 5: 21-27.
  • Stanford, D. A., Murdoch, D. J. and Xiong, Y. (2015). Perfect and nearly perfect sampling of work-conserving queues. Queueing Systems, 80 (3): 197-222.
  • Stanford, D. A., Taylor, P. and Ziedins, I. (2014). Waiting time distributions in the accumulating priority queue. Queueing Systems, 77 (3): 297-330.
  • Stanford, D. A., Drekic, S., McAlister, V. C. . and Woolford, D. G. . (2014). A model for deceased-donor transplant queue waiting times. Annals of Operations Research, 79 (1): 87-115.
  • Stanford, D. A., Hassan Zadeh, A. and Jones, B. L. (2014). A model for deceased-donor transplant queue waiting times. Scandinavian Actuarial Journal , (8): 714-728.
  • Stanford, D. A., Sharif, A. B., Taylor, P. and Ziedins, I. (2014). A multi-class multi-server accumulating priority queue with application to health care. Operations Research for Health Care, 3 (2): 73-79.
  • Stanford, D. A., Chandok, N., Lee, J. M. and McAlister, V. C. . (2014). A queuing model to address waiting time inconsistency in solid-organ transplantation. Annals of Operations Research, 3 (1): 40-45.
  • Stanford, D. A. and Hassan Zadeh, A. (2014). Bayesian and Bühlmann credibility for phase-type distributions with a univariate risk parameter. Scandinavian Actuarial Journal , .
  • Stanford, D. A., Badescu, A. L. . and Mitric, I. -. (2012). On the absolute ruin problem in a Sparre Andersen risk model with constant interest. Insurance: Mathematics and Economics, 50 (1): 167-178.
  • Stanford, D. A. (2011). 'Risk modelling with the mixed Erlang distribution' by G. E. Willmot and S. Lin. Applied Stochastic Models in Business and Industry, 27 (1): 4-5.
  • Stanford, D. A., Ren, J. and Yu, K. (2011). Erlangian approximation to finite time ruin probabilities in perturbed risk models. Annals of Operations Research, (1): 38-58.
  • Stanford, D. A., Martell, D. L. and Podur, J. J. (2010). A compound poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics, 21 (5): 457-469.
  • Stanford, D. A., Ren, J. and Yu, K. (2010). The moments of the time of ruin in Markovian risk models. North American Actuarial Journal, 14 (4): 464-471.
  • Stanford, D. A., Boychuk, D., Braun, W. J. ., Krougly , Z. L. . and Kulperger, R. J. . (2009). A stochastic forest fire growth model. Environmental and Ecological Statistics, 16 (2): 133-151.
  • Stanford, D. A., Breuer, L., Ren, J. and Yu, K. (2009). Perturbed risk processes analyzed as fluid flows. Stochastic Models, 25 (3): 522-544.
  • Stanford, D. A., Creed, I. F. and Krougly , Z. L. . (2009). A stochastic model for generating disturbance patterns within landscapes. Computers and Geosciences, 35 (7): 1451-1459.
  • Stanford, D. A., Provost, S. B. . and Yu, K. (2009). An accurate approximation for distance distributions arising in airtanker positioning and related problems. Forest Science, 55 (4): 293-309.
  • Stanford, D. A., Boychuk, D., Kulperger, R. J. ., Woolford, D. G. . and Wotton, B. M. (2009). Erlangian approximations for the transient analysis of a fluid queue model for forest fire perimeter. Annals of Operations Research, 47 (4): 305-317.
  • Stanford, D. A., Renouf, E. M. . and McAlister, V. C. . (2008). Waiting for liver transplantation in Canada: waitlist history 2000–2004 and sensitivity analysis for the future. Health Care Manage. Sci. , 184-195 .
  • Ramaswami, V., Woolford, D. G. . and Stanford, D. A. (2008). The erlangization method for Markovian fluid flows. Annals of Operations Research, 160 215-225.
  • Boychuk, D., Braun, W. J. ., Krougly , Z. L. ., Kulperger, R. J. . and Stanford, D. A. (2007). A stochastic model for forest fire growth. INFOR , 45 9-16.
  • Provost, S. B. ., Yu, K. and Stanford, D. A. (2007). On approximating the distribution of random distances within and between certain regions of space. INFOR , 45 51-63.
  • Stanford, D. A., Horn, W. and Latouche, G. (2006). Tri-layered QBD processes with boundary assistance for service resources. Stochastic Models, 22 361-382.
  • Latouche, G., Woolford, D. G. ., Boychuk, D., Hunchak, A. and Stanford, D. A. (2005). Erlangized Fluid Queues with Application to Fire Perimeter. Scandinavian Actuarial Journal , 2005 433-446.
  • Badescu, A. L. ., Breuer, L., Da Silva Soares, A., Latouche, G., Remiche, M. and Stanford, D. A. (2005). The Joint Density of the Surplus prior to Ruin and the Deficit at Ruin for a Correlated Risk Process. Scandinavian Actuarial Journal , 2005 127- 141.
  • Stanford, D. A., Avram, F., Badescu, A. L. ., Breuer, L., Da Silva Soares, A. and Latouche, G. (2005). Phase-Type Approximations to Finite-Time Ruin Probabilities in the Sparre Andersen and Stationary Renewal Risk Models. Astin Bulletin , 35 131-144.
  • Krougly , Z. L. . and Stanford, D. A. (2005). Iterative algorithms for performance evaluation of closed network models. Performance Evaluation , 61 41-64.